| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415 | 
							- import json
 
- from flask import request
 
- from flask_restful import marshal, reqparse  # type: ignore
 
- from sqlalchemy import desc
 
- from werkzeug.exceptions import NotFound
 
- import services.dataset_service
 
- from controllers.common.errors import FilenameNotExistsError
 
- from controllers.service_api import api
 
- from controllers.service_api.app.error import (
 
-     FileTooLargeError,
 
-     NoFileUploadedError,
 
-     ProviderNotInitializeError,
 
-     TooManyFilesError,
 
-     UnsupportedFileTypeError,
 
- )
 
- from controllers.service_api.dataset.error import (
 
-     ArchivedDocumentImmutableError,
 
-     DocumentIndexingError,
 
- )
 
- from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
 
- from core.errors.error import ProviderTokenNotInitError
 
- from extensions.ext_database import db
 
- from fields.document_fields import document_fields, document_status_fields
 
- from libs.login import current_user
 
- from models.dataset import Dataset, Document, DocumentSegment
 
- from services.dataset_service import DocumentService
 
- from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig
 
- from services.file_service import FileService
 
- class DocumentAddByTextApi(DatasetApiResource):
 
-     """Resource for documents."""
 
-     @cloud_edition_billing_resource_check("vector_space", "dataset")
 
-     @cloud_edition_billing_resource_check("documents", "dataset")
 
-     def post(self, tenant_id, dataset_id):
 
-         """Create document by text."""
 
-         parser = reqparse.RequestParser()
 
-         parser.add_argument("name", type=str, required=True, nullable=False, location="json")
 
-         parser.add_argument("text", type=str, required=True, nullable=False, location="json")
 
-         parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
 
-         parser.add_argument("original_document_id", type=str, required=False, location="json")
 
-         parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
 
-         parser.add_argument(
 
-             "doc_language", type=str, default="English", required=False, nullable=False, location="json"
 
-         )
 
-         parser.add_argument(
 
-             "indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
 
-         )
 
-         parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
 
-         args = parser.parse_args()
 
-         dataset_id = str(dataset_id)
 
-         tenant_id = str(tenant_id)
 
-         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 
-         if not dataset:
 
-             raise ValueError("Dataset is not exist.")
 
-         if not dataset.indexing_technique and not args["indexing_technique"]:
 
-             raise ValueError("indexing_technique is required.")
 
-         text = args.get("text")
 
-         name = args.get("name")
 
-         if text is None or name is None:
 
-             raise ValueError("Both 'text' and 'name' must be non-null values.")
 
-         upload_file = FileService.upload_text(text=str(text), text_name=str(name))
 
-         data_source = {
 
-             "type": "upload_file",
 
-             "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
 
-         }
 
-         args["data_source"] = data_source
 
-         knowledge_config = KnowledgeConfig(**args)
 
-         # validate args
 
-         DocumentService.document_create_args_validate(knowledge_config)
 
-         try:
 
-             documents, batch = DocumentService.save_document_with_dataset_id(
 
-                 dataset=dataset,
 
-                 knowledge_config=knowledge_config,
 
-                 account=current_user,
 
-                 dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
 
-                 created_from="api",
 
-             )
 
-         except ProviderTokenNotInitError as ex:
 
-             raise ProviderNotInitializeError(ex.description)
 
-         document = documents[0]
 
-         documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
 
-         return documents_and_batch_fields, 200
 
- class DocumentUpdateByTextApi(DatasetApiResource):
 
-     """Resource for update documents."""
 
-     @cloud_edition_billing_resource_check("vector_space", "dataset")
 
-     def post(self, tenant_id, dataset_id, document_id):
 
-         """Update document by text."""
 
-         parser = reqparse.RequestParser()
 
-         parser.add_argument("name", type=str, required=False, nullable=True, location="json")
 
-         parser.add_argument("text", type=str, required=False, nullable=True, location="json")
 
-         parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
 
-         parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
 
-         parser.add_argument(
 
-             "doc_language", type=str, default="English", required=False, nullable=False, location="json"
 
-         )
 
-         parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
 
-         args = parser.parse_args()
 
-         dataset_id = str(dataset_id)
 
-         tenant_id = str(tenant_id)
 
-         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 
-         if not dataset:
 
-             raise ValueError("Dataset is not exist.")
 
-         # indexing_technique is already set in dataset since this is an update
 
-         args["indexing_technique"] = dataset.indexing_technique
 
-         if args["text"]:
 
-             text = args.get("text")
 
-             name = args.get("name")
 
-             if text is None or name is None:
 
-                 raise ValueError("Both text and name must be strings.")
 
-             upload_file = FileService.upload_text(text=str(text), text_name=str(name))
 
-             data_source = {
 
-                 "type": "upload_file",
 
-                 "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
 
-             }
 
-             args["data_source"] = data_source
 
-         # validate args
 
-         args["original_document_id"] = str(document_id)
 
-         knowledge_config = KnowledgeConfig(**args)
 
-         DocumentService.document_create_args_validate(knowledge_config)
 
-         try:
 
-             documents, batch = DocumentService.save_document_with_dataset_id(
 
-                 dataset=dataset,
 
-                 knowledge_config=knowledge_config,
 
-                 account=current_user,
 
-                 dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
 
-                 created_from="api",
 
-             )
 
-         except ProviderTokenNotInitError as ex:
 
-             raise ProviderNotInitializeError(ex.description)
 
-         document = documents[0]
 
-         documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
 
-         return documents_and_batch_fields, 200
 
- class DocumentAddByFileApi(DatasetApiResource):
 
-     """Resource for documents."""
 
-     @cloud_edition_billing_resource_check("vector_space", "dataset")
 
-     @cloud_edition_billing_resource_check("documents", "dataset")
 
-     def post(self, tenant_id, dataset_id):
 
-         """Create document by upload file."""
 
-         args = {}
 
-         if "data" in request.form:
 
-             args = json.loads(request.form["data"])
 
-         if "doc_form" not in args:
 
-             args["doc_form"] = "text_model"
 
-         if "doc_language" not in args:
 
-             args["doc_language"] = "English"
 
-         # get dataset info
 
-         dataset_id = str(dataset_id)
 
-         tenant_id = str(tenant_id)
 
-         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 
-         if not dataset:
 
-             raise ValueError("Dataset is not exist.")
 
-         if not dataset.indexing_technique and not args.get("indexing_technique"):
 
-             raise ValueError("indexing_technique is required.")
 
-         # save file info
 
-         file = request.files["file"]
 
-         # check file
 
-         if "file" not in request.files:
 
-             raise NoFileUploadedError()
 
-         if len(request.files) > 1:
 
-             raise TooManyFilesError()
 
-         if not file.filename:
 
-             raise FilenameNotExistsError
 
-         upload_file = FileService.upload_file(
 
-             filename=file.filename,
 
-             content=file.read(),
 
-             mimetype=file.mimetype,
 
-             user=current_user,
 
-             source="datasets",
 
-         )
 
-         data_source = {
 
-             "type": "upload_file",
 
-             "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
 
-         }
 
-         args["data_source"] = data_source
 
-         # validate args
 
-         knowledge_config = KnowledgeConfig(**args)
 
-         DocumentService.document_create_args_validate(knowledge_config)
 
-         try:
 
-             documents, batch = DocumentService.save_document_with_dataset_id(
 
-                 dataset=dataset,
 
-                 knowledge_config=knowledge_config,
 
-                 account=dataset.created_by_account,
 
-                 dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
 
-                 created_from="api",
 
-             )
 
-         except ProviderTokenNotInitError as ex:
 
-             raise ProviderNotInitializeError(ex.description)
 
-         document = documents[0]
 
-         documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
 
-         return documents_and_batch_fields, 200
 
- class DocumentUpdateByFileApi(DatasetApiResource):
 
-     """Resource for update documents."""
 
-     @cloud_edition_billing_resource_check("vector_space", "dataset")
 
-     def post(self, tenant_id, dataset_id, document_id):
 
-         """Update document by upload file."""
 
-         args = {}
 
-         if "data" in request.form:
 
-             args = json.loads(request.form["data"])
 
-         if "doc_form" not in args:
 
-             args["doc_form"] = "text_model"
 
-         if "doc_language" not in args:
 
-             args["doc_language"] = "English"
 
-         # get dataset info
 
-         dataset_id = str(dataset_id)
 
-         tenant_id = str(tenant_id)
 
-         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 
-         if not dataset:
 
-             raise ValueError("Dataset is not exist.")
 
-         # indexing_technique is already set in dataset since this is an update
 
-         args["indexing_technique"] = dataset.indexing_technique
 
-         if "file" in request.files:
 
-             # save file info
 
-             file = request.files["file"]
 
-             if len(request.files) > 1:
 
-                 raise TooManyFilesError()
 
-             if not file.filename:
 
-                 raise FilenameNotExistsError
 
-             try:
 
-                 upload_file = FileService.upload_file(
 
-                     filename=file.filename,
 
-                     content=file.read(),
 
-                     mimetype=file.mimetype,
 
-                     user=current_user,
 
-                     source="datasets",
 
-                 )
 
-             except services.errors.file.FileTooLargeError as file_too_large_error:
 
-                 raise FileTooLargeError(file_too_large_error.description)
 
-             except services.errors.file.UnsupportedFileTypeError:
 
-                 raise UnsupportedFileTypeError()
 
-             data_source = {
 
-                 "type": "upload_file",
 
-                 "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
 
-             }
 
-             args["data_source"] = data_source
 
-         # validate args
 
-         args["original_document_id"] = str(document_id)
 
-         knowledge_config = KnowledgeConfig(**args)
 
-         DocumentService.document_create_args_validate(knowledge_config)
 
-         try:
 
-             documents, batch = DocumentService.save_document_with_dataset_id(
 
-                 dataset=dataset,
 
-                 knowledge_config=knowledge_config,
 
-                 account=dataset.created_by_account,
 
-                 dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
 
-                 created_from="api",
 
-             )
 
-         except ProviderTokenNotInitError as ex:
 
-             raise ProviderNotInitializeError(ex.description)
 
-         document = documents[0]
 
-         documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": document.batch}
 
-         return documents_and_batch_fields, 200
 
- class DocumentDeleteApi(DatasetApiResource):
 
-     def delete(self, tenant_id, dataset_id, document_id):
 
-         """Delete document."""
 
-         document_id = str(document_id)
 
-         dataset_id = str(dataset_id)
 
-         tenant_id = str(tenant_id)
 
-         # get dataset info
 
-         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 
-         if not dataset:
 
-             raise ValueError("Dataset is not exist.")
 
-         document = DocumentService.get_document(dataset.id, document_id)
 
-         # 404 if document not found
 
-         if document is None:
 
-             raise NotFound("Document Not Exists.")
 
-         # 403 if document is archived
 
-         if DocumentService.check_archived(document):
 
-             raise ArchivedDocumentImmutableError()
 
-         try:
 
-             # delete document
 
-             DocumentService.delete_document(document)
 
-         except services.errors.document.DocumentIndexingError:
 
-             raise DocumentIndexingError("Cannot delete document during indexing.")
 
-         return {"result": "success"}, 200
 
- class DocumentListApi(DatasetApiResource):
 
-     def get(self, tenant_id, dataset_id):
 
-         dataset_id = str(dataset_id)
 
-         tenant_id = str(tenant_id)
 
-         page = request.args.get("page", default=1, type=int)
 
-         limit = request.args.get("limit", default=20, type=int)
 
-         search = request.args.get("keyword", default=None, type=str)
 
-         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 
-         if not dataset:
 
-             raise NotFound("Dataset not found.")
 
-         query = Document.query.filter_by(dataset_id=str(dataset_id), tenant_id=tenant_id)
 
-         if search:
 
-             search = f"%{search}%"
 
-             query = query.filter(Document.name.like(search))
 
-         query = query.order_by(desc(Document.created_at))
 
-         paginated_documents = query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
 
-         documents = paginated_documents.items
 
-         response = {
 
-             "data": marshal(documents, document_fields),
 
-             "has_more": len(documents) == limit,
 
-             "limit": limit,
 
-             "total": paginated_documents.total,
 
-             "page": page,
 
-         }
 
-         return response
 
- class DocumentIndexingStatusApi(DatasetApiResource):
 
-     def get(self, tenant_id, dataset_id, batch):
 
-         dataset_id = str(dataset_id)
 
-         batch = str(batch)
 
-         tenant_id = str(tenant_id)
 
-         # get dataset
 
-         dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 
-         if not dataset:
 
-             raise NotFound("Dataset not found.")
 
-         # get documents
 
-         documents = DocumentService.get_batch_documents(dataset_id, batch)
 
-         if not documents:
 
-             raise NotFound("Documents not found.")
 
-         documents_status = []
 
-         for document in documents:
 
-             completed_segments = DocumentSegment.query.filter(
 
-                 DocumentSegment.completed_at.isnot(None),
 
-                 DocumentSegment.document_id == str(document.id),
 
-                 DocumentSegment.status != "re_segment",
 
-             ).count()
 
-             total_segments = DocumentSegment.query.filter(
 
-                 DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"
 
-             ).count()
 
-             document.completed_segments = completed_segments
 
-             document.total_segments = total_segments
 
-             if document.is_paused:
 
-                 document.indexing_status = "paused"
 
-             documents_status.append(marshal(document, document_status_fields))
 
-         data = {"data": documents_status}
 
-         return data
 
- api.add_resource(
 
-     DocumentAddByTextApi,
 
-     "/datasets/<uuid:dataset_id>/document/create_by_text",
 
-     "/datasets/<uuid:dataset_id>/document/create-by-text",
 
- )
 
- api.add_resource(
 
-     DocumentAddByFileApi,
 
-     "/datasets/<uuid:dataset_id>/document/create_by_file",
 
-     "/datasets/<uuid:dataset_id>/document/create-by-file",
 
- )
 
- api.add_resource(
 
-     DocumentUpdateByTextApi,
 
-     "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_text",
 
-     "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-text",
 
- )
 
- api.add_resource(
 
-     DocumentUpdateByFileApi,
 
-     "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_file",
 
-     "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-file",
 
- )
 
- api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
 
- api.add_resource(DocumentListApi, "/datasets/<uuid:dataset_id>/documents")
 
- api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<string:batch>/indexing-status")
 
 
  |