| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167 | import datetimeimport jsonimport loggingimport randomimport timeimport uuidfrom collections import Counterfrom typing import Any, Optionalfrom flask_login import current_user  # type: ignorefrom sqlalchemy import funcfrom sqlalchemy.orm import Sessionfrom werkzeug.exceptions import NotFoundfrom configs import dify_configfrom core.errors.error import LLMBadRequestError, ProviderTokenNotInitErrorfrom core.model_manager import ModelManagerfrom core.model_runtime.entities.model_entities import ModelTypefrom core.plugin.entities.plugin import ModelProviderIDfrom core.rag.index_processor.constant.index_type import IndexTypefrom core.rag.retrieval.retrieval_methods import RetrievalMethodfrom events.dataset_event import dataset_was_deletedfrom events.document_event import document_was_deletedfrom extensions.ext_database import dbfrom extensions.ext_redis import redis_clientfrom libs import helperfrom models.account import Account, TenantAccountRolefrom models.dataset import (    AppDatasetJoin,    ChildChunk,    Dataset,    DatasetAutoDisableLog,    DatasetCollectionBinding,    DatasetPermission,    DatasetPermissionEnum,    DatasetProcessRule,    DatasetQuery,    Document,    DocumentSegment,    ExternalKnowledgeBindings,)from models.model import UploadFilefrom models.source import DataSourceOauthBindingfrom services.entities.knowledge_entities.knowledge_entities import (    ChildChunkUpdateArgs,    KnowledgeConfig,    MetaDataConfig,    RerankingModel,    RetrievalModel,    SegmentUpdateArgs,)from services.errors.account import InvalidActionError, NoPermissionErrorfrom services.errors.chunk import ChildChunkDeleteIndexError, ChildChunkIndexingErrorfrom services.errors.dataset import DatasetNameDuplicateErrorfrom services.errors.document import DocumentIndexingErrorfrom services.errors.file import FileNotExistsErrorfrom services.external_knowledge_service import ExternalDatasetServicefrom services.feature_service import FeatureModel, FeatureServicefrom services.tag_service import TagServicefrom services.vector_service import VectorServicefrom tasks.batch_clean_document_task import batch_clean_document_taskfrom tasks.clean_notion_document_task import clean_notion_document_taskfrom tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_taskfrom tasks.delete_segment_from_index_task import delete_segment_from_index_taskfrom tasks.disable_segment_from_index_task import disable_segment_from_index_taskfrom tasks.disable_segments_from_index_task import disable_segments_from_index_taskfrom tasks.document_indexing_task import document_indexing_taskfrom tasks.document_indexing_update_task import document_indexing_update_taskfrom tasks.duplicate_document_indexing_task import duplicate_document_indexing_taskfrom tasks.enable_segments_to_index_task import enable_segments_to_index_taskfrom tasks.recover_document_indexing_task import recover_document_indexing_taskfrom tasks.retry_document_indexing_task import retry_document_indexing_taskfrom tasks.sync_website_document_indexing_task import sync_website_document_indexing_taskclass DatasetService:    @staticmethod    def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None, include_all=False):        query = Dataset.query.filter(Dataset.tenant_id == tenant_id).order_by(Dataset.created_at.desc())        if user:            # get permitted dataset ids            dataset_permission = DatasetPermission.query.filter_by(account_id=user.id, tenant_id=tenant_id).all()            permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None            if user.current_role == TenantAccountRole.DATASET_OPERATOR:                # only show datasets that the user has permission to access                if permitted_dataset_ids:                    query = query.filter(Dataset.id.in_(permitted_dataset_ids))                else:                    return [], 0            else:                if user.current_role != TenantAccountRole.OWNER or not include_all:                    # show all datasets that the user has permission to access                    if permitted_dataset_ids:                        query = query.filter(                            db.or_(                                Dataset.permission == DatasetPermissionEnum.ALL_TEAM,                                db.and_(                                    Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id                                ),                                db.and_(                                    Dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM,                                    Dataset.id.in_(permitted_dataset_ids),                                ),                            )                        )                    else:                        query = query.filter(                            db.or_(                                Dataset.permission == DatasetPermissionEnum.ALL_TEAM,                                db.and_(                                    Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id                                ),                            )                        )        else:            # if no user, only show datasets that are shared with all team members            query = query.filter(Dataset.permission == DatasetPermissionEnum.ALL_TEAM)        if search:            query = query.filter(Dataset.name.ilike(f"%{search}%"))        if tag_ids:            target_ids = TagService.get_target_ids_by_tag_ids("knowledge", tenant_id, tag_ids)            if target_ids:                query = query.filter(Dataset.id.in_(target_ids))            else:                return [], 0        datasets = query.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)        return datasets.items, datasets.total    @staticmethod    def get_process_rules(dataset_id):        # get the latest process rule        dataset_process_rule = (            db.session.query(DatasetProcessRule)            .filter(DatasetProcessRule.dataset_id == dataset_id)            .order_by(DatasetProcessRule.created_at.desc())            .limit(1)            .one_or_none()        )        if dataset_process_rule:            mode = dataset_process_rule.mode            rules = dataset_process_rule.rules_dict        else:            mode = DocumentService.DEFAULT_RULES["mode"]            rules = DocumentService.DEFAULT_RULES["rules"]        return {"mode": mode, "rules": rules}    @staticmethod    def get_datasets_by_ids(ids, tenant_id):        datasets = Dataset.query.filter(Dataset.id.in_(ids), Dataset.tenant_id == tenant_id).paginate(            page=1, per_page=len(ids), max_per_page=len(ids), error_out=False        )        return datasets.items, datasets.total    @staticmethod    def create_empty_dataset(        tenant_id: str,        name: str,        description: Optional[str],        indexing_technique: Optional[str],        account: Account,        permission: Optional[str] = None,        provider: str = "vendor",        external_knowledge_api_id: Optional[str] = None,        external_knowledge_id: Optional[str] = None,    ):        # check if dataset name already exists        if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():            raise DatasetNameDuplicateError(f"Dataset with name {name} already exists.")        embedding_model = None        if indexing_technique == "high_quality":            model_manager = ModelManager()            embedding_model = model_manager.get_default_model_instance(                tenant_id=tenant_id, model_type=ModelType.TEXT_EMBEDDING            )        dataset = Dataset(name=name, indexing_technique=indexing_technique)        # dataset = Dataset(name=name, provider=provider, config=config)        dataset.description = description        dataset.created_by = account.id        dataset.updated_by = account.id        dataset.tenant_id = tenant_id        dataset.embedding_model_provider = embedding_model.provider if embedding_model else None        dataset.embedding_model = embedding_model.model if embedding_model else None        dataset.permission = permission or DatasetPermissionEnum.ONLY_ME        dataset.provider = provider        db.session.add(dataset)        db.session.flush()        if provider == "external" and external_knowledge_api_id:            external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id)            if not external_knowledge_api:                raise ValueError("External API template not found.")            external_knowledge_binding = ExternalKnowledgeBindings(                tenant_id=tenant_id,                dataset_id=dataset.id,                external_knowledge_api_id=external_knowledge_api_id,                external_knowledge_id=external_knowledge_id,                created_by=account.id,            )            db.session.add(external_knowledge_binding)        db.session.commit()        return dataset    @staticmethod    def get_dataset(dataset_id) -> Optional[Dataset]:        dataset: Optional[Dataset] = Dataset.query.filter_by(id=dataset_id).first()        return dataset    @staticmethod    def check_dataset_model_setting(dataset):        if dataset.indexing_technique == "high_quality":            try:                model_manager = ModelManager()                model_manager.get_model_instance(                    tenant_id=dataset.tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model,                )            except LLMBadRequestError:                raise ValueError(                    "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."                )            except ProviderTokenNotInitError as ex:                raise ValueError(f"The dataset in unavailable, due to: {ex.description}")    @staticmethod    def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model: str):        try:            model_manager = ModelManager()            model_manager.get_model_instance(                tenant_id=tenant_id,                provider=embedding_model_provider,                model_type=ModelType.TEXT_EMBEDDING,                model=embedding_model,            )        except LLMBadRequestError:            raise ValueError(                "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."            )        except ProviderTokenNotInitError as ex:            raise ValueError(f"The dataset in unavailable, due to: {ex.description}")    @staticmethod    def update_dataset(dataset_id, data, user):        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise ValueError("Dataset not found")        DatasetService.check_dataset_permission(dataset, user)        if dataset.provider == "external":            external_retrieval_model = data.get("external_retrieval_model", None)            if external_retrieval_model:                dataset.retrieval_model = external_retrieval_model            dataset.name = data.get("name", dataset.name)            dataset.description = data.get("description", "")            permission = data.get("permission")            if permission:                dataset.permission = permission            external_knowledge_id = data.get("external_knowledge_id", None)            db.session.add(dataset)            if not external_knowledge_id:                raise ValueError("External knowledge id is required.")            external_knowledge_api_id = data.get("external_knowledge_api_id", None)            if not external_knowledge_api_id:                raise ValueError("External knowledge api id is required.")            with Session(db.engine) as session:                external_knowledge_binding = (                    session.query(ExternalKnowledgeBindings).filter_by(dataset_id=dataset_id).first()                )                if not external_knowledge_binding:                    raise ValueError("External knowledge binding not found.")            if (                external_knowledge_binding.external_knowledge_id != external_knowledge_id                or external_knowledge_binding.external_knowledge_api_id != external_knowledge_api_id            ):                external_knowledge_binding.external_knowledge_id = external_knowledge_id                external_knowledge_binding.external_knowledge_api_id = external_knowledge_api_id                db.session.add(external_knowledge_binding)            db.session.commit()        else:            data.pop("partial_member_list", None)            data.pop("external_knowledge_api_id", None)            data.pop("external_knowledge_id", None)            data.pop("external_retrieval_model", None)            filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"}            action = None            if dataset.indexing_technique != data["indexing_technique"]:                # if update indexing_technique                if data["indexing_technique"] == "economy":                    action = "remove"                    filtered_data["embedding_model"] = None                    filtered_data["embedding_model_provider"] = None                    filtered_data["collection_binding_id"] = None                elif data["indexing_technique"] == "high_quality":                    action = "add"                    # get embedding model setting                    try:                        model_manager = ModelManager()                        embedding_model = model_manager.get_model_instance(                            tenant_id=current_user.current_tenant_id,                            provider=data["embedding_model_provider"],                            model_type=ModelType.TEXT_EMBEDDING,                            model=data["embedding_model"],                        )                        filtered_data["embedding_model"] = embedding_model.model                        filtered_data["embedding_model_provider"] = embedding_model.provider                        dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                            embedding_model.provider, embedding_model.model                        )                        filtered_data["collection_binding_id"] = dataset_collection_binding.id                    except LLMBadRequestError:                        raise ValueError(                            "No Embedding Model available. Please configure a valid provider "                            "in the Settings -> Model Provider."                        )                    except ProviderTokenNotInitError as ex:                        raise ValueError(ex.description)            else:                # add default plugin id to both setting sets, to make sure the plugin model provider is consistent                plugin_model_provider = dataset.embedding_model_provider                plugin_model_provider = str(ModelProviderID(plugin_model_provider))                new_plugin_model_provider = data["embedding_model_provider"]                new_plugin_model_provider = str(ModelProviderID(new_plugin_model_provider))                if (                    new_plugin_model_provider != plugin_model_provider                    or data["embedding_model"] != dataset.embedding_model                ):                    action = "update"                    try:                        model_manager = ModelManager()                        embedding_model = model_manager.get_model_instance(                            tenant_id=current_user.current_tenant_id,                            provider=data["embedding_model_provider"],                            model_type=ModelType.TEXT_EMBEDDING,                            model=data["embedding_model"],                        )                        filtered_data["embedding_model"] = embedding_model.model                        filtered_data["embedding_model_provider"] = embedding_model.provider                        dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                            embedding_model.provider, embedding_model.model                        )                        filtered_data["collection_binding_id"] = dataset_collection_binding.id                    except LLMBadRequestError:                        raise ValueError(                            "No Embedding Model available. Please configure a valid provider "                            "in the Settings -> Model Provider."                        )                    except ProviderTokenNotInitError as ex:                        raise ValueError(ex.description)            filtered_data["updated_by"] = user.id            filtered_data["updated_at"] = datetime.datetime.now()            # update Retrieval model            filtered_data["retrieval_model"] = data["retrieval_model"]            dataset.query.filter_by(id=dataset_id).update(filtered_data)            db.session.commit()            if action:                deal_dataset_vector_index_task.delay(dataset_id, action)        return dataset    @staticmethod    def delete_dataset(dataset_id, user):        dataset = DatasetService.get_dataset(dataset_id)        if dataset is None:            return False        DatasetService.check_dataset_permission(dataset, user)        dataset_was_deleted.send(dataset)        db.session.delete(dataset)        db.session.commit()        return True    @staticmethod    def dataset_use_check(dataset_id) -> bool:        count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()        if count > 0:            return True        return False    @staticmethod    def check_dataset_permission(dataset, user):        if dataset.tenant_id != user.current_tenant_id:            logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")            raise NoPermissionError("You do not have permission to access this dataset.")        if user.current_role != TenantAccountRole.OWNER:            if dataset.permission == DatasetPermissionEnum.ONLY_ME and dataset.created_by != user.id:                logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")                raise NoPermissionError("You do not have permission to access this dataset.")            if dataset.permission == "partial_members":                user_permission = DatasetPermission.query.filter_by(dataset_id=dataset.id, account_id=user.id).first()                if (                    not user_permission                    and dataset.tenant_id != user.current_tenant_id                    and dataset.created_by != user.id                ):                    logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")                    raise NoPermissionError("You do not have permission to access this dataset.")    @staticmethod    def check_dataset_operator_permission(user: Optional[Account] = None, dataset: Optional[Dataset] = None):        if not dataset:            raise ValueError("Dataset not found")        if not user:            raise ValueError("User not found")        if user.current_role != TenantAccountRole.OWNER:            if dataset.permission == DatasetPermissionEnum.ONLY_ME:                if dataset.created_by != user.id:                    raise NoPermissionError("You do not have permission to access this dataset.")            elif dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM:                if not any(                    dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()                ):                    raise NoPermissionError("You do not have permission to access this dataset.")    @staticmethod    def get_dataset_queries(dataset_id: str, page: int, per_page: int):        dataset_queries = (            DatasetQuery.query.filter_by(dataset_id=dataset_id)            .order_by(db.desc(DatasetQuery.created_at))            .paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)        )        return dataset_queries.items, dataset_queries.total    @staticmethod    def get_related_apps(dataset_id: str):        return (            AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id)            .order_by(db.desc(AppDatasetJoin.created_at))            .all()        )    @staticmethod    def get_dataset_auto_disable_logs(dataset_id: str) -> dict:        features = FeatureService.get_features(current_user.current_tenant_id)        if not features.billing.enabled or features.billing.subscription.plan == "sandbox":            return {                "document_ids": [],                "count": 0,            }        # get recent 30 days auto disable logs        start_date = datetime.datetime.now() - datetime.timedelta(days=30)        dataset_auto_disable_logs = DatasetAutoDisableLog.query.filter(            DatasetAutoDisableLog.dataset_id == dataset_id,            DatasetAutoDisableLog.created_at >= start_date,        ).all()        if dataset_auto_disable_logs:            return {                "document_ids": [log.document_id for log in dataset_auto_disable_logs],                "count": len(dataset_auto_disable_logs),            }        return {            "document_ids": [],            "count": 0,        }class DocumentService:    DEFAULT_RULES: dict[str, Any] = {        "mode": "custom",        "rules": {            "pre_processing_rules": [                {"id": "remove_extra_spaces", "enabled": True},                {"id": "remove_urls_emails", "enabled": False},            ],            "segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50},        },        "limits": {            "indexing_max_segmentation_tokens_length": dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH,        },    }    DOCUMENT_METADATA_SCHEMA: dict[str, Any] = {        "book": {            "title": str,            "language": str,            "author": str,            "publisher": str,            "publication_date": str,            "isbn": str,            "category": str,        },        "web_page": {            "title": str,            "url": str,            "language": str,            "publish_date": str,            "author/publisher": str,            "topic/keywords": str,            "description": str,        },        "paper": {            "title": str,            "language": str,            "author": str,            "publish_date": str,            "journal/conference_name": str,            "volume/issue/page_numbers": str,            "doi": str,            "topic/keywords": str,            "abstract": str,        },        "social_media_post": {            "platform": str,            "author/username": str,            "publish_date": str,            "post_url": str,            "topic/tags": str,        },        "wikipedia_entry": {            "title": str,            "language": str,            "web_page_url": str,            "last_edit_date": str,            "editor/contributor": str,            "summary/introduction": str,        },        "personal_document": {            "title": str,            "author": str,            "creation_date": str,            "last_modified_date": str,            "document_type": str,            "tags/category": str,        },        "business_document": {            "title": str,            "author": str,            "creation_date": str,            "last_modified_date": str,            "document_type": str,            "department/team": str,        },        "im_chat_log": {            "chat_platform": str,            "chat_participants/group_name": str,            "start_date": str,            "end_date": str,            "summary": str,        },        "synced_from_notion": {            "title": str,            "language": str,            "author/creator": str,            "creation_date": str,            "last_modified_date": str,            "notion_page_link": str,            "category/tags": str,            "description": str,        },        "synced_from_github": {            "repository_name": str,            "repository_description": str,            "repository_owner/organization": str,            "code_filename": str,            "code_file_path": str,            "programming_language": str,            "github_link": str,            "open_source_license": str,            "commit_date": str,            "commit_author": str,        },        "others": dict,    }    @staticmethod    def get_document(dataset_id: str, document_id: Optional[str] = None) -> Optional[Document]:        if document_id:            document = (                db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()            )            return document        else:            return None    @staticmethod    def get_document_by_id(document_id: str) -> Optional[Document]:        document = db.session.query(Document).filter(Document.id == document_id).first()        return document    @staticmethod    def get_document_by_dataset_id(dataset_id: str) -> list[Document]:        documents = db.session.query(Document).filter(Document.dataset_id == dataset_id, Document.enabled == True).all()        return documents    @staticmethod    def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:        documents = (            db.session.query(Document)            .filter(Document.dataset_id == dataset_id, Document.indexing_status.in_(["error", "paused"]))            .all()        )        return documents    @staticmethod    def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:        documents = (            db.session.query(Document)            .filter(                Document.batch == batch,                Document.dataset_id == dataset_id,                Document.tenant_id == current_user.current_tenant_id,            )            .all()        )        return documents    @staticmethod    def get_document_file_detail(file_id: str):        file_detail = db.session.query(UploadFile).filter(UploadFile.id == file_id).one_or_none()        return file_detail    @staticmethod    def check_archived(document):        if document.archived:            return True        else:            return False    @staticmethod    def delete_document(document):        # trigger document_was_deleted signal        file_id = None        if document.data_source_type == "upload_file":            if document.data_source_info:                data_source_info = document.data_source_info_dict                if data_source_info and "upload_file_id" in data_source_info:                    file_id = data_source_info["upload_file_id"]        document_was_deleted.send(            document.id, dataset_id=document.dataset_id, doc_form=document.doc_form, file_id=file_id        )        db.session.delete(document)        db.session.commit()    @staticmethod    def delete_documents(dataset: Dataset, document_ids: list[str]):        documents = db.session.query(Document).filter(Document.id.in_(document_ids)).all()        file_ids = [            document.data_source_info_dict["upload_file_id"]            for document in documents            if document.data_source_type == "upload_file"        ]        batch_clean_document_task.delay(document_ids, dataset.id, dataset.doc_form, file_ids)        for document in documents:            db.session.delete(document)        db.session.commit()    @staticmethod    def rename_document(dataset_id: str, document_id: str, name: str) -> Document:        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise ValueError("Dataset not found.")        document = DocumentService.get_document(dataset_id, document_id)        if not document:            raise ValueError("Document not found.")        if document.tenant_id != current_user.current_tenant_id:            raise ValueError("No permission.")        document.name = name        db.session.add(document)        db.session.commit()        return document    @staticmethod    def pause_document(document):        if document.indexing_status not in {"waiting", "parsing", "cleaning", "splitting", "indexing"}:            raise DocumentIndexingError()        # update document to be paused        document.is_paused = True        document.paused_by = current_user.id        document.paused_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)        db.session.add(document)        db.session.commit()        # set document paused flag        indexing_cache_key = "document_{}_is_paused".format(document.id)        redis_client.setnx(indexing_cache_key, "True")    @staticmethod    def recover_document(document):        if not document.is_paused:            raise DocumentIndexingError()        # update document to be recover        document.is_paused = False        document.paused_by = None        document.paused_at = None        db.session.add(document)        db.session.commit()        # delete paused flag        indexing_cache_key = "document_{}_is_paused".format(document.id)        redis_client.delete(indexing_cache_key)        # trigger async task        recover_document_indexing_task.delay(document.dataset_id, document.id)    @staticmethod    def retry_document(dataset_id: str, documents: list[Document]):        for document in documents:            # add retry flag            retry_indexing_cache_key = "document_{}_is_retried".format(document.id)            cache_result = redis_client.get(retry_indexing_cache_key)            if cache_result is not None:                raise ValueError("Document is being retried, please try again later")            # retry document indexing            document.indexing_status = "waiting"            db.session.add(document)            db.session.commit()            redis_client.setex(retry_indexing_cache_key, 600, 1)        # trigger async task        document_ids = [document.id for document in documents]        retry_document_indexing_task.delay(dataset_id, document_ids)    @staticmethod    def sync_website_document(dataset_id: str, document: Document):        # add sync flag        sync_indexing_cache_key = "document_{}_is_sync".format(document.id)        cache_result = redis_client.get(sync_indexing_cache_key)        if cache_result is not None:            raise ValueError("Document is being synced, please try again later")        # sync document indexing        document.indexing_status = "waiting"        data_source_info = document.data_source_info_dict        data_source_info["mode"] = "scrape"        document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)        db.session.add(document)        db.session.commit()        redis_client.setex(sync_indexing_cache_key, 600, 1)        sync_website_document_indexing_task.delay(dataset_id, document.id)    @staticmethod    def get_documents_position(dataset_id):        document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()        if document:            return document.position + 1        else:            return 1    @staticmethod    def save_document_with_dataset_id(        dataset: Dataset,        knowledge_config: KnowledgeConfig,        account: Account | Any,        dataset_process_rule: Optional[DatasetProcessRule] = None,        created_from: str = "web",    ):        # check document limit        features = FeatureService.get_features(current_user.current_tenant_id)        if features.billing.enabled:            if not knowledge_config.original_document_id:                count = 0                if knowledge_config.data_source:                    if knowledge_config.data_source.info_list.data_source_type == "upload_file":                        upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids  # type: ignore                        count = len(upload_file_list)                    elif knowledge_config.data_source.info_list.data_source_type == "notion_import":                        notion_info_list = knowledge_config.data_source.info_list.notion_info_list                        for notion_info in notion_info_list:  # type: ignore                            count = count + len(notion_info.pages)                    elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":                        website_info = knowledge_config.data_source.info_list.website_info_list                        count = len(website_info.urls)  # type: ignore                    batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)                    if count > batch_upload_limit:                        raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")                    DocumentService.check_documents_upload_quota(count, features)        # if dataset is empty, update dataset data_source_type        if not dataset.data_source_type:            dataset.data_source_type = knowledge_config.data_source.info_list.data_source_type  # type: ignore        if not dataset.indexing_technique:            if knowledge_config.indexing_technique not in Dataset.INDEXING_TECHNIQUE_LIST:                raise ValueError("Indexing technique is invalid")            dataset.indexing_technique = knowledge_config.indexing_technique            if knowledge_config.indexing_technique == "high_quality":                model_manager = ModelManager()                if knowledge_config.embedding_model and knowledge_config.embedding_model_provider:                    dataset_embedding_model = knowledge_config.embedding_model                    dataset_embedding_model_provider = knowledge_config.embedding_model_provider                else:                    embedding_model = model_manager.get_default_model_instance(                        tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING                    )                    dataset_embedding_model = embedding_model.model                    dataset_embedding_model_provider = embedding_model.provider                dataset.embedding_model = dataset_embedding_model                dataset.embedding_model_provider = dataset_embedding_model_provider                dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                    dataset_embedding_model_provider, dataset_embedding_model                )                dataset.collection_binding_id = dataset_collection_binding.id                if not dataset.retrieval_model:                    default_retrieval_model = {                        "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,                        "reranking_enable": False,                        "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},                        "top_k": 2,                        "score_threshold_enabled": False,                    }                    dataset.retrieval_model = (                        knowledge_config.retrieval_model.model_dump()                        if knowledge_config.retrieval_model                        else default_retrieval_model                    )  # type: ignore        documents = []        if knowledge_config.original_document_id:            document = DocumentService.update_document_with_dataset_id(dataset, knowledge_config, account)            documents.append(document)            batch = document.batch        else:            batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999))            # save process rule            if not dataset_process_rule:                process_rule = knowledge_config.process_rule                if process_rule:                    if process_rule.mode in ("custom", "hierarchical"):                        dataset_process_rule = DatasetProcessRule(                            dataset_id=dataset.id,                            mode=process_rule.mode,                            rules=process_rule.rules.model_dump_json() if process_rule.rules else None,                            created_by=account.id,                        )                    elif process_rule.mode == "automatic":                        dataset_process_rule = DatasetProcessRule(                            dataset_id=dataset.id,                            mode=process_rule.mode,                            rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),                            created_by=account.id,                        )                    else:                        logging.warn(                            f"Invalid process rule mode: {process_rule.mode}, can not find dataset process rule"                        )                        return                    db.session.add(dataset_process_rule)                    db.session.commit()            lock_name = "add_document_lock_dataset_id_{}".format(dataset.id)            with redis_client.lock(lock_name, timeout=600):                position = DocumentService.get_documents_position(dataset.id)                document_ids = []                duplicate_document_ids = []                if knowledge_config.data_source.info_list.data_source_type == "upload_file":  # type: ignore                    upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids  # type: ignore                    for file_id in upload_file_list:                        file = (                            db.session.query(UploadFile)                            .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)                            .first()                        )                        # raise error if file not found                        if not file:                            raise FileNotExistsError()                        file_name = file.name                        data_source_info = {                            "upload_file_id": file_id,                        }                        # check duplicate                        if knowledge_config.duplicate:                            document = Document.query.filter_by(                                dataset_id=dataset.id,                                tenant_id=current_user.current_tenant_id,                                data_source_type="upload_file",                                enabled=True,                                name=file_name,                            ).first()                            if document:                                document.dataset_process_rule_id = dataset_process_rule.id  # type: ignore                                document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                                document.created_from = created_from                                document.doc_form = knowledge_config.doc_form                                document.doc_language = knowledge_config.doc_language                                document.data_source_info = json.dumps(data_source_info)                                document.batch = batch                                document.indexing_status = "waiting"                                if knowledge_config.metadata:                                    document.doc_type = knowledge_config.metadata.doc_type                                    document.metadata = knowledge_config.metadata.doc_metadata                                db.session.add(document)                                documents.append(document)                                duplicate_document_ids.append(document.id)                                continue                        document = DocumentService.build_document(                            dataset,                            dataset_process_rule.id,  # type: ignore                            knowledge_config.data_source.info_list.data_source_type,  # type: ignore                            knowledge_config.doc_form,                            knowledge_config.doc_language,                            data_source_info,                            created_from,                            position,                            account,                            file_name,                            batch,                            knowledge_config.metadata,                        )                        db.session.add(document)                        db.session.flush()                        document_ids.append(document.id)                        documents.append(document)                        position += 1                elif knowledge_config.data_source.info_list.data_source_type == "notion_import":  # type: ignore                    notion_info_list = knowledge_config.data_source.info_list.notion_info_list  # type: ignore                    if not notion_info_list:                        raise ValueError("No notion info list found.")                    exist_page_ids = []                    exist_document = {}                    documents = Document.query.filter_by(                        dataset_id=dataset.id,                        tenant_id=current_user.current_tenant_id,                        data_source_type="notion_import",                        enabled=True,                    ).all()                    if documents:                        for document in documents:                            data_source_info = json.loads(document.data_source_info)                            exist_page_ids.append(data_source_info["notion_page_id"])                            exist_document[data_source_info["notion_page_id"]] = document.id                    for notion_info in notion_info_list:                        workspace_id = notion_info.workspace_id                        data_source_binding = DataSourceOauthBinding.query.filter(                            db.and_(                                DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,                                DataSourceOauthBinding.provider == "notion",                                DataSourceOauthBinding.disabled == False,                                DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',                            )                        ).first()                        if not data_source_binding:                            raise ValueError("Data source binding not found.")                        for page in notion_info.pages:                            if page.page_id not in exist_page_ids:                                data_source_info = {                                    "notion_workspace_id": workspace_id,                                    "notion_page_id": page.page_id,                                    "notion_page_icon": page.page_icon.model_dump() if page.page_icon else None,                                    "type": page.type,                                }                                # Truncate page name to 255 characters to prevent DB field length errors                                truncated_page_name = page.page_name[:255] if page.page_name else "nopagename"                                document = DocumentService.build_document(                                    dataset,                                    dataset_process_rule.id,  # type: ignore                                    knowledge_config.data_source.info_list.data_source_type,  # type: ignore                                    knowledge_config.doc_form,                                    knowledge_config.doc_language,                                    data_source_info,                                    created_from,                                    position,                                    account,                                    truncated_page_name,                                    batch,                                    knowledge_config.metadata,                                )                                db.session.add(document)                                db.session.flush()                                document_ids.append(document.id)                                documents.append(document)                                position += 1                            else:                                exist_document.pop(page.page_id)                    # delete not selected documents                    if len(exist_document) > 0:                        clean_notion_document_task.delay(list(exist_document.values()), dataset.id)                elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":  # type: ignore                    website_info = knowledge_config.data_source.info_list.website_info_list  # type: ignore                    if not website_info:                        raise ValueError("No website info list found.")                    urls = website_info.urls                    for url in urls:                        data_source_info = {                            "url": url,                            "provider": website_info.provider,                            "job_id": website_info.job_id,                            "only_main_content": website_info.only_main_content,                            "mode": "crawl",                        }                        if len(url) > 255:                            document_name = url[:200] + "..."                        else:                            document_name = url                        document = DocumentService.build_document(                            dataset,                            dataset_process_rule.id,  # type: ignore                            knowledge_config.data_source.info_list.data_source_type,  # type: ignore                            knowledge_config.doc_form,                            knowledge_config.doc_language,                            data_source_info,                            created_from,                            position,                            account,                            document_name,                            batch,                            knowledge_config.metadata,                        )                        db.session.add(document)                        db.session.flush()                        document_ids.append(document.id)                        documents.append(document)                        position += 1                db.session.commit()                # trigger async task                if document_ids:                    document_indexing_task.delay(dataset.id, document_ids)                if duplicate_document_ids:                    duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)        return documents, batch    @staticmethod    def check_documents_upload_quota(count: int, features: FeatureModel):        can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size        if count > can_upload_size:            raise ValueError(                f"You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded."            )    @staticmethod    def build_document(        dataset: Dataset,        process_rule_id: str,        data_source_type: str,        document_form: str,        document_language: str,        data_source_info: dict,        created_from: str,        position: int,        account: Account,        name: str,        batch: str,        metadata: Optional[MetaDataConfig] = None,    ):        document = Document(            tenant_id=dataset.tenant_id,            dataset_id=dataset.id,            position=position,            data_source_type=data_source_type,            data_source_info=json.dumps(data_source_info),            dataset_process_rule_id=process_rule_id,            batch=batch,            name=name,            created_from=created_from,            created_by=account.id,            doc_form=document_form,            doc_language=document_language,        )        if metadata is not None:            document.doc_metadata = metadata.doc_metadata            document.doc_type = metadata.doc_type        return document    @staticmethod    def get_tenant_documents_count():        documents_count = Document.query.filter(            Document.completed_at.isnot(None),            Document.enabled == True,            Document.archived == False,            Document.tenant_id == current_user.current_tenant_id,        ).count()        return documents_count    @staticmethod    def update_document_with_dataset_id(        dataset: Dataset,        document_data: KnowledgeConfig,        account: Account,        dataset_process_rule: Optional[DatasetProcessRule] = None,        created_from: str = "web",    ):        DatasetService.check_dataset_model_setting(dataset)        document = DocumentService.get_document(dataset.id, document_data.original_document_id)        if document is None:            raise NotFound("Document not found")        if document.display_status != "available":            raise ValueError("Document is not available")        # save process rule        if document_data.process_rule:            process_rule = document_data.process_rule            if process_rule.mode in {"custom", "hierarchical"}:                dataset_process_rule = DatasetProcessRule(                    dataset_id=dataset.id,                    mode=process_rule.mode,                    rules=process_rule.rules.model_dump_json() if process_rule.rules else None,                    created_by=account.id,                )            elif process_rule.mode == "automatic":                dataset_process_rule = DatasetProcessRule(                    dataset_id=dataset.id,                    mode=process_rule.mode,                    rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),                    created_by=account.id,                )            if dataset_process_rule is not None:                db.session.add(dataset_process_rule)                db.session.commit()                document.dataset_process_rule_id = dataset_process_rule.id        # update document data source        if document_data.data_source:            file_name = ""            data_source_info = {}            if document_data.data_source.info_list.data_source_type == "upload_file":                if not document_data.data_source.info_list.file_info_list:                    raise ValueError("No file info list found.")                upload_file_list = document_data.data_source.info_list.file_info_list.file_ids                for file_id in upload_file_list:                    file = (                        db.session.query(UploadFile)                        .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)                        .first()                    )                    # raise error if file not found                    if not file:                        raise FileNotExistsError()                    file_name = file.name                    data_source_info = {                        "upload_file_id": file_id,                    }            elif document_data.data_source.info_list.data_source_type == "notion_import":                if not document_data.data_source.info_list.notion_info_list:                    raise ValueError("No notion info list found.")                notion_info_list = document_data.data_source.info_list.notion_info_list                for notion_info in notion_info_list:                    workspace_id = notion_info.workspace_id                    data_source_binding = DataSourceOauthBinding.query.filter(                        db.and_(                            DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,                            DataSourceOauthBinding.provider == "notion",                            DataSourceOauthBinding.disabled == False,                            DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',                        )                    ).first()                    if not data_source_binding:                        raise ValueError("Data source binding not found.")                    for page in notion_info.pages:                        data_source_info = {                            "notion_workspace_id": workspace_id,                            "notion_page_id": page.page_id,                            "notion_page_icon": page.page_icon.model_dump() if page.page_icon else None,  # type: ignore                            "type": page.type,                        }            elif document_data.data_source.info_list.data_source_type == "website_crawl":                website_info = document_data.data_source.info_list.website_info_list                if website_info:                    urls = website_info.urls                    for url in urls:                        data_source_info = {                            "url": url,                            "provider": website_info.provider,                            "job_id": website_info.job_id,                            "only_main_content": website_info.only_main_content,  # type: ignore                            "mode": "crawl",                        }            document.data_source_type = document_data.data_source.info_list.data_source_type            document.data_source_info = json.dumps(data_source_info)            document.name = file_name        # update document name        if document_data.name:            document.name = document_data.name        # update doc_type and doc_metadata if provided        if document_data.metadata is not None:            document.doc_metadata = document_data.metadata.doc_type            document.doc_type = document_data.metadata.doc_type        # update document to be waiting        document.indexing_status = "waiting"        document.completed_at = None        document.processing_started_at = None        document.parsing_completed_at = None        document.cleaning_completed_at = None        document.splitting_completed_at = None        document.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)        document.created_from = created_from        document.doc_form = document_data.doc_form        db.session.add(document)        db.session.commit()        # update document segment        update_params = {DocumentSegment.status: "re_segment"}        DocumentSegment.query.filter_by(document_id=document.id).update(update_params)        db.session.commit()        # trigger async task        document_indexing_update_task.delay(document.dataset_id, document.id)        return document    @staticmethod    def save_document_without_dataset_id(tenant_id: str, knowledge_config: KnowledgeConfig, account: Account):        features = FeatureService.get_features(current_user.current_tenant_id)        if features.billing.enabled:            count = 0            if knowledge_config.data_source.info_list.data_source_type == "upload_file":  # type: ignore                upload_file_list = (                    knowledge_config.data_source.info_list.file_info_list.file_ids  # type: ignore                    if knowledge_config.data_source.info_list.file_info_list  # type: ignore                    else []                )                count = len(upload_file_list)            elif knowledge_config.data_source.info_list.data_source_type == "notion_import":  # type: ignore                notion_info_list = knowledge_config.data_source.info_list.notion_info_list  # type: ignore                if notion_info_list:                    for notion_info in notion_info_list:                        count = count + len(notion_info.pages)            elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":  # type: ignore                website_info = knowledge_config.data_source.info_list.website_info_list  # type: ignore                if website_info:                    count = len(website_info.urls)            batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)            if count > batch_upload_limit:                raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")            DocumentService.check_documents_upload_quota(count, features)        dataset_collection_binding_id = None        retrieval_model = None        if knowledge_config.indexing_technique == "high_quality":            dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                knowledge_config.embedding_model_provider,  # type: ignore                knowledge_config.embedding_model,  # type: ignore            )            dataset_collection_binding_id = dataset_collection_binding.id            if knowledge_config.retrieval_model:                retrieval_model = knowledge_config.retrieval_model            else:                retrieval_model = RetrievalModel(                    search_method=RetrievalMethod.SEMANTIC_SEARCH.value,                    reranking_enable=False,                    reranking_model=RerankingModel(reranking_provider_name="", reranking_model_name=""),                    top_k=2,                    score_threshold_enabled=False,                )        # save dataset        dataset = Dataset(            tenant_id=tenant_id,            name="",            data_source_type=knowledge_config.data_source.info_list.data_source_type,  # type: ignore            indexing_technique=knowledge_config.indexing_technique,            created_by=account.id,            embedding_model=knowledge_config.embedding_model,            embedding_model_provider=knowledge_config.embedding_model_provider,            collection_binding_id=dataset_collection_binding_id,            retrieval_model=retrieval_model.model_dump() if retrieval_model else None,        )        db.session.add(dataset)  # type: ignore        db.session.flush()        documents, batch = DocumentService.save_document_with_dataset_id(dataset, knowledge_config, account)        cut_length = 18        cut_name = documents[0].name[:cut_length]        dataset.name = cut_name + "..."        dataset.description = "useful for when you want to answer queries about the " + documents[0].name        db.session.commit()        return dataset, documents, batch    @classmethod    def document_create_args_validate(cls, knowledge_config: KnowledgeConfig):        if not knowledge_config.data_source and not knowledge_config.process_rule:            raise ValueError("Data source or Process rule is required")        else:            if knowledge_config.data_source:                DocumentService.data_source_args_validate(knowledge_config)            if knowledge_config.process_rule:                DocumentService.process_rule_args_validate(knowledge_config)    @classmethod    def data_source_args_validate(cls, knowledge_config: KnowledgeConfig):        if not knowledge_config.data_source:            raise ValueError("Data source is required")        if knowledge_config.data_source.info_list.data_source_type not in Document.DATA_SOURCES:            raise ValueError("Data source type is invalid")        if not knowledge_config.data_source.info_list:            raise ValueError("Data source info is required")        if knowledge_config.data_source.info_list.data_source_type == "upload_file":            if not knowledge_config.data_source.info_list.file_info_list:                raise ValueError("File source info is required")        if knowledge_config.data_source.info_list.data_source_type == "notion_import":            if not knowledge_config.data_source.info_list.notion_info_list:                raise ValueError("Notion source info is required")        if knowledge_config.data_source.info_list.data_source_type == "website_crawl":            if not knowledge_config.data_source.info_list.website_info_list:                raise ValueError("Website source info is required")    @classmethod    def process_rule_args_validate(cls, knowledge_config: KnowledgeConfig):        if not knowledge_config.process_rule:            raise ValueError("Process rule is required")        if not knowledge_config.process_rule.mode:            raise ValueError("Process rule mode is required")        if knowledge_config.process_rule.mode not in DatasetProcessRule.MODES:            raise ValueError("Process rule mode is invalid")        if knowledge_config.process_rule.mode == "automatic":            knowledge_config.process_rule.rules = None        else:            if not knowledge_config.process_rule.rules:                raise ValueError("Process rule rules is required")            if knowledge_config.process_rule.rules.pre_processing_rules is None:                raise ValueError("Process rule pre_processing_rules is required")            unique_pre_processing_rule_dicts = {}            for pre_processing_rule in knowledge_config.process_rule.rules.pre_processing_rules:                if not pre_processing_rule.id:                    raise ValueError("Process rule pre_processing_rules id is required")                if not isinstance(pre_processing_rule.enabled, bool):                    raise ValueError("Process rule pre_processing_rules enabled is invalid")                unique_pre_processing_rule_dicts[pre_processing_rule.id] = pre_processing_rule            knowledge_config.process_rule.rules.pre_processing_rules = list(unique_pre_processing_rule_dicts.values())            if not knowledge_config.process_rule.rules.segmentation:                raise ValueError("Process rule segmentation is required")            if not knowledge_config.process_rule.rules.segmentation.separator:                raise ValueError("Process rule segmentation separator is required")            if not isinstance(knowledge_config.process_rule.rules.segmentation.separator, str):                raise ValueError("Process rule segmentation separator is invalid")            if not (                knowledge_config.process_rule.mode == "hierarchical"                and knowledge_config.process_rule.rules.parent_mode == "full-doc"            ):                if not knowledge_config.process_rule.rules.segmentation.max_tokens:                    raise ValueError("Process rule segmentation max_tokens is required")                if not isinstance(knowledge_config.process_rule.rules.segmentation.max_tokens, int):                    raise ValueError("Process rule segmentation max_tokens is invalid")    @classmethod    def estimate_args_validate(cls, args: dict):        if "info_list" not in args or not args["info_list"]:            raise ValueError("Data source info is required")        if not isinstance(args["info_list"], dict):            raise ValueError("Data info is invalid")        if "process_rule" not in args or not args["process_rule"]:            raise ValueError("Process rule is required")        if not isinstance(args["process_rule"], dict):            raise ValueError("Process rule is invalid")        if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]:            raise ValueError("Process rule mode is required")        if args["process_rule"]["mode"] not in DatasetProcessRule.MODES:            raise ValueError("Process rule mode is invalid")        if args["process_rule"]["mode"] == "automatic":            args["process_rule"]["rules"] = {}        else:            if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]:                raise ValueError("Process rule rules is required")            if not isinstance(args["process_rule"]["rules"], dict):                raise ValueError("Process rule rules is invalid")            if (                "pre_processing_rules" not in args["process_rule"]["rules"]                or args["process_rule"]["rules"]["pre_processing_rules"] is None            ):                raise ValueError("Process rule pre_processing_rules is required")            if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list):                raise ValueError("Process rule pre_processing_rules is invalid")            unique_pre_processing_rule_dicts = {}            for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]:                if "id" not in pre_processing_rule or not pre_processing_rule["id"]:                    raise ValueError("Process rule pre_processing_rules id is required")                if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES:                    raise ValueError("Process rule pre_processing_rules id is invalid")                if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None:                    raise ValueError("Process rule pre_processing_rules enabled is required")                if not isinstance(pre_processing_rule["enabled"], bool):                    raise ValueError("Process rule pre_processing_rules enabled is invalid")                unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule            args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values())            if (                "segmentation" not in args["process_rule"]["rules"]                or args["process_rule"]["rules"]["segmentation"] is None            ):                raise ValueError("Process rule segmentation is required")            if not isinstance(args["process_rule"]["rules"]["segmentation"], dict):                raise ValueError("Process rule segmentation is invalid")            if (                "separator" not in args["process_rule"]["rules"]["segmentation"]                or not args["process_rule"]["rules"]["segmentation"]["separator"]            ):                raise ValueError("Process rule segmentation separator is required")            if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str):                raise ValueError("Process rule segmentation separator is invalid")            if (                "max_tokens" not in args["process_rule"]["rules"]["segmentation"]                or not args["process_rule"]["rules"]["segmentation"]["max_tokens"]            ):                raise ValueError("Process rule segmentation max_tokens is required")            if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):                raise ValueError("Process rule segmentation max_tokens is invalid")class SegmentService:    @classmethod    def segment_create_args_validate(cls, args: dict, document: Document):        if document.doc_form == "qa_model":            if "answer" not in args or not args["answer"]:                raise ValueError("Answer is required")            if not args["answer"].strip():                raise ValueError("Answer is empty")        if "content" not in args or not args["content"] or not args["content"].strip():            raise ValueError("Content is empty")    @classmethod    def create_segment(cls, args: dict, document: Document, dataset: Dataset):        content = args["content"]        doc_id = str(uuid.uuid4())        segment_hash = helper.generate_text_hash(content)        tokens = 0        if dataset.indexing_technique == "high_quality":            model_manager = ModelManager()            embedding_model = model_manager.get_model_instance(                tenant_id=current_user.current_tenant_id,                provider=dataset.embedding_model_provider,                model_type=ModelType.TEXT_EMBEDDING,                model=dataset.embedding_model,            )            # calc embedding use tokens            tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]        lock_name = "add_segment_lock_document_id_{}".format(document.id)        with redis_client.lock(lock_name, timeout=600):            max_position = (                db.session.query(func.max(DocumentSegment.position))                .filter(DocumentSegment.document_id == document.id)                .scalar()            )            segment_document = DocumentSegment(                tenant_id=current_user.current_tenant_id,                dataset_id=document.dataset_id,                document_id=document.id,                index_node_id=doc_id,                index_node_hash=segment_hash,                position=max_position + 1 if max_position else 1,                content=content,                word_count=len(content),                tokens=tokens,                status="completed",                indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),                completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),                created_by=current_user.id,            )            if document.doc_form == "qa_model":                segment_document.word_count += len(args["answer"])                segment_document.answer = args["answer"]            db.session.add(segment_document)            # update document word count            document.word_count += segment_document.word_count            db.session.add(document)            db.session.commit()            # save vector index            try:                VectorService.create_segments_vector([args["keywords"]], [segment_document], dataset, document.doc_form)            except Exception as e:                logging.exception("create segment index failed")                segment_document.enabled = False                segment_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)                segment_document.status = "error"                segment_document.error = str(e)                db.session.commit()            segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()            return segment    @classmethod    def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):        lock_name = "multi_add_segment_lock_document_id_{}".format(document.id)        increment_word_count = 0        with redis_client.lock(lock_name, timeout=600):            embedding_model = None            if dataset.indexing_technique == "high_quality":                model_manager = ModelManager()                embedding_model = model_manager.get_model_instance(                    tenant_id=current_user.current_tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model,                )            max_position = (                db.session.query(func.max(DocumentSegment.position))                .filter(DocumentSegment.document_id == document.id)                .scalar()            )            pre_segment_data_list = []            segment_data_list = []            keywords_list = []            position = max_position + 1 if max_position else 1            for segment_item in segments:                content = segment_item["content"]                doc_id = str(uuid.uuid4())                segment_hash = helper.generate_text_hash(content)                tokens = 0                if dataset.indexing_technique == "high_quality" and embedding_model:                    # calc embedding use tokens                    if document.doc_form == "qa_model":                        tokens = embedding_model.get_text_embedding_num_tokens(                            texts=[content + segment_item["answer"]]                        )[0]                    else:                        tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]                segment_document = DocumentSegment(                    tenant_id=current_user.current_tenant_id,                    dataset_id=document.dataset_id,                    document_id=document.id,                    index_node_id=doc_id,                    index_node_hash=segment_hash,                    position=position,                    content=content,                    word_count=len(content),                    tokens=tokens,                    status="completed",                    indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),                    completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),                    created_by=current_user.id,                )                if document.doc_form == "qa_model":                    segment_document.answer = segment_item["answer"]                    segment_document.word_count += len(segment_item["answer"])                increment_word_count += segment_document.word_count                db.session.add(segment_document)                segment_data_list.append(segment_document)                position += 1                pre_segment_data_list.append(segment_document)                if "keywords" in segment_item:                    keywords_list.append(segment_item["keywords"])                else:                    keywords_list.append(None)            # update document word count            document.word_count += increment_word_count            db.session.add(document)            try:                # save vector index                VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset, document.doc_form)            except Exception as e:                logging.exception("create segment index failed")                for segment_document in segment_data_list:                    segment_document.enabled = False                    segment_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)                    segment_document.status = "error"                    segment_document.error = str(e)            db.session.commit()            return segment_data_list    @classmethod    def update_segment(cls, args: SegmentUpdateArgs, segment: DocumentSegment, document: Document, dataset: Dataset):        indexing_cache_key = "segment_{}_indexing".format(segment.id)        cache_result = redis_client.get(indexing_cache_key)        if cache_result is not None:            raise ValueError("Segment is indexing, please try again later")        if args.enabled is not None:            action = args.enabled            if segment.enabled != action:                if not action:                    segment.enabled = action                    segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)                    segment.disabled_by = current_user.id                    db.session.add(segment)                    db.session.commit()                    # Set cache to prevent indexing the same segment multiple times                    redis_client.setex(indexing_cache_key, 600, 1)                    disable_segment_from_index_task.delay(segment.id)                    return segment        if not segment.enabled:            if args.enabled is not None:                if not args.enabled:                    raise ValueError("Can't update disabled segment")            else:                raise ValueError("Can't update disabled segment")        try:            word_count_change = segment.word_count            content = args.content or segment.content            if segment.content == content:                segment.word_count = len(content)                if document.doc_form == "qa_model":                    segment.answer = args.answer                    segment.word_count += len(args.answer) if args.answer else 0                word_count_change = segment.word_count - word_count_change                keyword_changed = False                if args.keywords:                    if Counter(segment.keywords) != Counter(args.keywords):                        segment.keywords = args.keywords                        keyword_changed = True                segment.enabled = True                segment.disabled_at = None                segment.disabled_by = None                db.session.add(segment)                db.session.commit()                # update document word count                if word_count_change != 0:                    document.word_count = max(0, document.word_count + word_count_change)                    db.session.add(document)                # update segment index task                if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:                    # regenerate child chunks                    # get embedding model instance                    if dataset.indexing_technique == "high_quality":                        # check embedding model setting                        model_manager = ModelManager()                        if dataset.embedding_model_provider:                            embedding_model_instance = model_manager.get_model_instance(                                tenant_id=dataset.tenant_id,                                provider=dataset.embedding_model_provider,                                model_type=ModelType.TEXT_EMBEDDING,                                model=dataset.embedding_model,                            )                        else:                            embedding_model_instance = model_manager.get_default_model_instance(                                tenant_id=dataset.tenant_id,                                model_type=ModelType.TEXT_EMBEDDING,                            )                    else:                        raise ValueError("The knowledge base index technique is not high quality!")                    # get the process rule                    processing_rule = (                        db.session.query(DatasetProcessRule)                        .filter(DatasetProcessRule.id == document.dataset_process_rule_id)                        .first()                    )                    if not processing_rule:                        raise ValueError("No processing rule found.")                    VectorService.generate_child_chunks(                        segment, document, dataset, embedding_model_instance, processing_rule, True                    )                elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):                    if args.enabled or keyword_changed:                        VectorService.create_segments_vector(                            [args.keywords] if args.keywords else None,                            [segment],                            dataset,                            document.doc_form,                        )            else:                segment_hash = helper.generate_text_hash(content)                tokens = 0                if dataset.indexing_technique == "high_quality":                    model_manager = ModelManager()                    embedding_model = model_manager.get_model_instance(                        tenant_id=current_user.current_tenant_id,                        provider=dataset.embedding_model_provider,                        model_type=ModelType.TEXT_EMBEDDING,                        model=dataset.embedding_model,                    )                    # calc embedding use tokens                    if document.doc_form == "qa_model":                        tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment.answer])[0]                    else:                        tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]                segment.content = content                segment.index_node_hash = segment_hash                segment.word_count = len(content)                segment.tokens = tokens                segment.status = "completed"                segment.indexing_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)                segment.completed_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)                segment.updated_by = current_user.id                segment.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)                segment.enabled = True                segment.disabled_at = None                segment.disabled_by = None                if document.doc_form == "qa_model":                    segment.answer = args.answer                    segment.word_count += len(args.answer) if args.answer else 0                word_count_change = segment.word_count - word_count_change                # update document word count                if word_count_change != 0:                    document.word_count = max(0, document.word_count + word_count_change)                    db.session.add(document)                db.session.add(segment)                db.session.commit()                if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:                    # get embedding model instance                    if dataset.indexing_technique == "high_quality":                        # check embedding model setting                        model_manager = ModelManager()                        if dataset.embedding_model_provider:                            embedding_model_instance = model_manager.get_model_instance(                                tenant_id=dataset.tenant_id,                                provider=dataset.embedding_model_provider,                                model_type=ModelType.TEXT_EMBEDDING,                                model=dataset.embedding_model,                            )                        else:                            embedding_model_instance = model_manager.get_default_model_instance(                                tenant_id=dataset.tenant_id,                                model_type=ModelType.TEXT_EMBEDDING,                            )                    else:                        raise ValueError("The knowledge base index technique is not high quality!")                    # get the process rule                    processing_rule = (                        db.session.query(DatasetProcessRule)                        .filter(DatasetProcessRule.id == document.dataset_process_rule_id)                        .first()                    )                    if not processing_rule:                        raise ValueError("No processing rule found.")                    VectorService.generate_child_chunks(                        segment, document, dataset, embedding_model_instance, processing_rule, True                    )                elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):                    # update segment vector index                    VectorService.update_segment_vector(args.keywords, segment, dataset)        except Exception as e:            logging.exception("update segment index failed")            segment.enabled = False            segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)            segment.status = "error"            segment.error = str(e)            db.session.commit()        new_segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()        return new_segment    @classmethod    def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):        indexing_cache_key = "segment_{}_delete_indexing".format(segment.id)        cache_result = redis_client.get(indexing_cache_key)        if cache_result is not None:            raise ValueError("Segment is deleting.")        # enabled segment need to delete index        if segment.enabled:            # send delete segment index task            redis_client.setex(indexing_cache_key, 600, 1)            delete_segment_from_index_task.delay([segment.index_node_id], dataset.id, document.id)        db.session.delete(segment)        # update document word count        document.word_count -= segment.word_count        db.session.add(document)        db.session.commit()    @classmethod    def delete_segments(cls, segment_ids: list, document: Document, dataset: Dataset):        index_node_ids = (            DocumentSegment.query.with_entities(DocumentSegment.index_node_id)            .filter(                DocumentSegment.id.in_(segment_ids),                DocumentSegment.dataset_id == dataset.id,                DocumentSegment.document_id == document.id,                DocumentSegment.tenant_id == current_user.current_tenant_id,            )            .all()        )        index_node_ids = [index_node_id[0] for index_node_id in index_node_ids]        delete_segment_from_index_task.delay(index_node_ids, dataset.id, document.id)        db.session.query(DocumentSegment).filter(DocumentSegment.id.in_(segment_ids)).delete()        db.session.commit()    @classmethod    def update_segments_status(cls, segment_ids: list, action: str, dataset: Dataset, document: Document):        if action == "enable":            segments = (                db.session.query(DocumentSegment)                .filter(                    DocumentSegment.id.in_(segment_ids),                    DocumentSegment.dataset_id == dataset.id,                    DocumentSegment.document_id == document.id,                    DocumentSegment.enabled == False,                )                .all()            )            if not segments:                return            real_deal_segmment_ids = []            for segment in segments:                indexing_cache_key = "segment_{}_indexing".format(segment.id)                cache_result = redis_client.get(indexing_cache_key)                if cache_result is not None:                    continue                segment.enabled = True                segment.disabled_at = None                segment.disabled_by = None                db.session.add(segment)                real_deal_segmment_ids.append(segment.id)            db.session.commit()            enable_segments_to_index_task.delay(real_deal_segmment_ids, dataset.id, document.id)        elif action == "disable":            segments = (                db.session.query(DocumentSegment)                .filter(                    DocumentSegment.id.in_(segment_ids),                    DocumentSegment.dataset_id == dataset.id,                    DocumentSegment.document_id == document.id,                    DocumentSegment.enabled == True,                )                .all()            )            if not segments:                return            real_deal_segmment_ids = []            for segment in segments:                indexing_cache_key = "segment_{}_indexing".format(segment.id)                cache_result = redis_client.get(indexing_cache_key)                if cache_result is not None:                    continue                segment.enabled = False                segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                segment.disabled_by = current_user.id                db.session.add(segment)                real_deal_segmment_ids.append(segment.id)            db.session.commit()            disable_segments_from_index_task.delay(real_deal_segmment_ids, dataset.id, document.id)        else:            raise InvalidActionError()    @classmethod    def create_child_chunk(        cls, content: str, segment: DocumentSegment, document: Document, dataset: Dataset    ) -> ChildChunk:        lock_name = "add_child_lock_{}".format(segment.id)        with redis_client.lock(lock_name, timeout=20):            index_node_id = str(uuid.uuid4())            index_node_hash = helper.generate_text_hash(content)            child_chunk_count = (                db.session.query(ChildChunk)                .filter(                    ChildChunk.tenant_id == current_user.current_tenant_id,                    ChildChunk.dataset_id == dataset.id,                    ChildChunk.document_id == document.id,                    ChildChunk.segment_id == segment.id,                )                .count()            )            max_position = (                db.session.query(func.max(ChildChunk.position))                .filter(                    ChildChunk.tenant_id == current_user.current_tenant_id,                    ChildChunk.dataset_id == dataset.id,                    ChildChunk.document_id == document.id,                    ChildChunk.segment_id == segment.id,                )                .scalar()            )            child_chunk = ChildChunk(                tenant_id=current_user.current_tenant_id,                dataset_id=dataset.id,                document_id=document.id,                segment_id=segment.id,                position=max_position + 1,                index_node_id=index_node_id,                index_node_hash=index_node_hash,                content=content,                word_count=len(content),                type="customized",                created_by=current_user.id,            )            db.session.add(child_chunk)            # save vector index            try:                VectorService.create_child_chunk_vector(child_chunk, dataset)            except Exception as e:                logging.exception("create child chunk index failed")                db.session.rollback()                raise ChildChunkIndexingError(str(e))            db.session.commit()            return child_chunk    @classmethod    def update_child_chunks(        cls,        child_chunks_update_args: list[ChildChunkUpdateArgs],        segment: DocumentSegment,        document: Document,        dataset: Dataset,    ) -> list[ChildChunk]:        child_chunks = (            db.session.query(ChildChunk)            .filter(                ChildChunk.dataset_id == dataset.id,                ChildChunk.document_id == document.id,                ChildChunk.segment_id == segment.id,            )            .all()        )        child_chunks_map = {chunk.id: chunk for chunk in child_chunks}        new_child_chunks, update_child_chunks, delete_child_chunks, new_child_chunks_args = [], [], [], []        for child_chunk_update_args in child_chunks_update_args:            if child_chunk_update_args.id:                child_chunk = child_chunks_map.pop(child_chunk_update_args.id, None)                if child_chunk:                    if child_chunk.content != child_chunk_update_args.content:                        child_chunk.content = child_chunk_update_args.content                        child_chunk.word_count = len(child_chunk.content)                        child_chunk.updated_by = current_user.id                        child_chunk.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                        child_chunk.type = "customized"                        update_child_chunks.append(child_chunk)            else:                new_child_chunks_args.append(child_chunk_update_args)        if child_chunks_map:            delete_child_chunks = list(child_chunks_map.values())        try:            if update_child_chunks:                db.session.bulk_save_objects(update_child_chunks)            if delete_child_chunks:                for child_chunk in delete_child_chunks:                    db.session.delete(child_chunk)            if new_child_chunks_args:                child_chunk_count = len(child_chunks)                for position, args in enumerate(new_child_chunks_args, start=child_chunk_count + 1):                    index_node_id = str(uuid.uuid4())                    index_node_hash = helper.generate_text_hash(args.content)                    child_chunk = ChildChunk(                        tenant_id=current_user.current_tenant_id,                        dataset_id=dataset.id,                        document_id=document.id,                        segment_id=segment.id,                        position=position,                        index_node_id=index_node_id,                        index_node_hash=index_node_hash,                        content=args.content,                        word_count=len(args.content),                        type="customized",                        created_by=current_user.id,                    )                    db.session.add(child_chunk)                    db.session.flush()                    new_child_chunks.append(child_chunk)            VectorService.update_child_chunk_vector(new_child_chunks, update_child_chunks, delete_child_chunks, dataset)            db.session.commit()        except Exception as e:            logging.exception("update child chunk index failed")            db.session.rollback()            raise ChildChunkIndexingError(str(e))        return sorted(new_child_chunks + update_child_chunks, key=lambda x: x.position)    @classmethod    def update_child_chunk(        cls,        content: str,        child_chunk: ChildChunk,        segment: DocumentSegment,        document: Document,        dataset: Dataset,    ) -> ChildChunk:        try:            child_chunk.content = content            child_chunk.word_count = len(content)            child_chunk.updated_by = current_user.id            child_chunk.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)            child_chunk.type = "customized"            db.session.add(child_chunk)            VectorService.update_child_chunk_vector([], [child_chunk], [], dataset)            db.session.commit()        except Exception as e:            logging.exception("update child chunk index failed")            db.session.rollback()            raise ChildChunkIndexingError(str(e))        return child_chunk    @classmethod    def delete_child_chunk(cls, child_chunk: ChildChunk, dataset: Dataset):        db.session.delete(child_chunk)        try:            VectorService.delete_child_chunk_vector(child_chunk, dataset)        except Exception as e:            logging.exception("delete child chunk index failed")            db.session.rollback()            raise ChildChunkDeleteIndexError(str(e))        db.session.commit()    @classmethod    def get_child_chunks(        cls, segment_id: str, document_id: str, dataset_id: str, page: int, limit: int, keyword: Optional[str] = None    ):        query = ChildChunk.query.filter_by(            tenant_id=current_user.current_tenant_id,            dataset_id=dataset_id,            document_id=document_id,            segment_id=segment_id,        ).order_by(ChildChunk.position.asc())        if keyword:            query = query.where(ChildChunk.content.ilike(f"%{keyword}%"))        return query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)class DatasetCollectionBindingService:    @classmethod    def get_dataset_collection_binding(        cls, provider_name: str, model_name: str, collection_type: str = "dataset"    ) -> DatasetCollectionBinding:        dataset_collection_binding = (            db.session.query(DatasetCollectionBinding)            .filter(                DatasetCollectionBinding.provider_name == provider_name,                DatasetCollectionBinding.model_name == model_name,                DatasetCollectionBinding.type == collection_type,            )            .order_by(DatasetCollectionBinding.created_at)            .first()        )        if not dataset_collection_binding:            dataset_collection_binding = DatasetCollectionBinding(                provider_name=provider_name,                model_name=model_name,                collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),                type=collection_type,            )            db.session.add(dataset_collection_binding)            db.session.commit()        return dataset_collection_binding    @classmethod    def get_dataset_collection_binding_by_id_and_type(        cls, collection_binding_id: str, collection_type: str = "dataset"    ) -> DatasetCollectionBinding:        dataset_collection_binding = (            db.session.query(DatasetCollectionBinding)            .filter(                DatasetCollectionBinding.id == collection_binding_id, DatasetCollectionBinding.type == collection_type            )            .order_by(DatasetCollectionBinding.created_at)            .first()        )        if not dataset_collection_binding:            raise ValueError("Dataset collection binding not found")        return dataset_collection_bindingclass DatasetPermissionService:    @classmethod    def get_dataset_partial_member_list(cls, dataset_id):        user_list_query = (            db.session.query(                DatasetPermission.account_id,            )            .filter(DatasetPermission.dataset_id == dataset_id)            .all()        )        user_list = []        for user in user_list_query:            user_list.append(user.account_id)        return user_list    @classmethod    def update_partial_member_list(cls, tenant_id, dataset_id, user_list):        try:            db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()            permissions = []            for user in user_list:                permission = DatasetPermission(                    tenant_id=tenant_id,                    dataset_id=dataset_id,                    account_id=user["user_id"],                )                permissions.append(permission)            db.session.add_all(permissions)            db.session.commit()        except Exception as e:            db.session.rollback()            raise e    @classmethod    def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):        if not user.is_dataset_editor:            raise NoPermissionError("User does not have permission to edit this dataset.")        if user.is_dataset_operator and dataset.permission != requested_permission:            raise NoPermissionError("Dataset operators cannot change the dataset permissions.")        if user.is_dataset_operator and requested_permission == "partial_members":            if not requested_partial_member_list:                raise ValueError("Partial member list is required when setting to partial members.")            local_member_list = cls.get_dataset_partial_member_list(dataset.id)            request_member_list = [user["user_id"] for user in requested_partial_member_list]            if set(local_member_list) != set(request_member_list):                raise ValueError("Dataset operators cannot change the dataset permissions.")    @classmethod    def clear_partial_member_list(cls, dataset_id):        try:            db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()            db.session.commit()        except Exception as e:            db.session.rollback()            raise e
 |