fc_agent_runner.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440
  1. import json
  2. import logging
  3. from collections.abc import Generator
  4. from copy import deepcopy
  5. from typing import Any, Optional, Union
  6. from core.agent.base_agent_runner import BaseAgentRunner
  7. from core.app.apps.base_app_queue_manager import PublishFrom
  8. from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
  9. from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
  10. from core.model_runtime.entities.message_entities import (
  11. AssistantPromptMessage,
  12. PromptMessage,
  13. PromptMessageContent,
  14. PromptMessageContentType,
  15. SystemPromptMessage,
  16. TextPromptMessageContent,
  17. ToolPromptMessage,
  18. UserPromptMessage,
  19. )
  20. from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
  21. from core.tools.entities.tool_entities import ToolInvokeMeta
  22. from core.tools.tool_engine import ToolEngine
  23. from models.model import Message
  24. logger = logging.getLogger(__name__)
  25. class FunctionCallAgentRunner(BaseAgentRunner):
  26. def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
  27. """
  28. Run FunctionCall agent application
  29. """
  30. self.query = query
  31. app_generate_entity = self.application_generate_entity
  32. app_config = self.app_config
  33. # convert tools into ModelRuntime Tool format
  34. tool_instances, prompt_messages_tools = self._init_prompt_tools()
  35. assert app_config.agent
  36. iteration_step = 1
  37. max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
  38. # continue to run until there is not any tool call
  39. function_call_state = True
  40. llm_usage: dict[str, Optional[LLMUsage]] = {"usage": None}
  41. final_answer = ""
  42. # get tracing instance
  43. trace_manager = app_generate_entity.trace_manager
  44. def increase_usage(final_llm_usage_dict: dict[str, Optional[LLMUsage]], usage: LLMUsage):
  45. if not final_llm_usage_dict["usage"]:
  46. final_llm_usage_dict["usage"] = usage
  47. else:
  48. llm_usage = final_llm_usage_dict["usage"]
  49. llm_usage.prompt_tokens += usage.prompt_tokens
  50. llm_usage.completion_tokens += usage.completion_tokens
  51. llm_usage.prompt_price += usage.prompt_price
  52. llm_usage.completion_price += usage.completion_price
  53. llm_usage.total_price += usage.total_price
  54. model_instance = self.model_instance
  55. while function_call_state and iteration_step <= max_iteration_steps:
  56. function_call_state = False
  57. if iteration_step == max_iteration_steps:
  58. # the last iteration, remove all tools
  59. prompt_messages_tools = []
  60. message_file_ids = []
  61. agent_thought = self.create_agent_thought(
  62. message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
  63. )
  64. # recalc llm max tokens
  65. prompt_messages = self._organize_prompt_messages()
  66. self.recalc_llm_max_tokens(self.model_config, prompt_messages)
  67. # invoke model
  68. chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
  69. prompt_messages=prompt_messages,
  70. model_parameters=app_generate_entity.model_conf.parameters,
  71. tools=prompt_messages_tools,
  72. stop=app_generate_entity.model_conf.stop,
  73. stream=self.stream_tool_call,
  74. user=self.user_id,
  75. callbacks=[],
  76. )
  77. tool_calls: list[tuple[str, str, dict[str, Any]]] = []
  78. # save full response
  79. response = ""
  80. # save tool call names and inputs
  81. tool_call_names = ""
  82. tool_call_inputs = ""
  83. current_llm_usage = None
  84. if isinstance(chunks, Generator):
  85. is_first_chunk = True
  86. for chunk in chunks:
  87. if is_first_chunk:
  88. self.queue_manager.publish(
  89. QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
  90. )
  91. is_first_chunk = False
  92. # check if there is any tool call
  93. if self.check_tool_calls(chunk):
  94. function_call_state = True
  95. tool_calls.extend(self.extract_tool_calls(chunk))
  96. tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
  97. try:
  98. tool_call_inputs = json.dumps(
  99. {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
  100. )
  101. except json.JSONDecodeError as e:
  102. # ensure ascii to avoid encoding error
  103. tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
  104. if chunk.delta.message and chunk.delta.message.content:
  105. if isinstance(chunk.delta.message.content, list):
  106. for content in chunk.delta.message.content:
  107. response += content.data
  108. else:
  109. response += chunk.delta.message.content
  110. if chunk.delta.usage:
  111. increase_usage(llm_usage, chunk.delta.usage)
  112. current_llm_usage = chunk.delta.usage
  113. yield chunk
  114. else:
  115. result = chunks
  116. # check if there is any tool call
  117. if self.check_blocking_tool_calls(result):
  118. function_call_state = True
  119. tool_calls.extend(self.extract_blocking_tool_calls(result))
  120. tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
  121. try:
  122. tool_call_inputs = json.dumps(
  123. {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
  124. )
  125. except json.JSONDecodeError as e:
  126. # ensure ascii to avoid encoding error
  127. tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
  128. if result.usage:
  129. increase_usage(llm_usage, result.usage)
  130. current_llm_usage = result.usage
  131. if result.message and result.message.content:
  132. if isinstance(result.message.content, list):
  133. for content in result.message.content:
  134. response += content.data
  135. else:
  136. response += result.message.content
  137. if not result.message.content:
  138. result.message.content = ""
  139. self.queue_manager.publish(
  140. QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
  141. )
  142. yield LLMResultChunk(
  143. model=model_instance.model,
  144. prompt_messages=result.prompt_messages,
  145. system_fingerprint=result.system_fingerprint,
  146. delta=LLMResultChunkDelta(
  147. index=0,
  148. message=result.message,
  149. usage=result.usage,
  150. ),
  151. )
  152. assistant_message = AssistantPromptMessage(content="", tool_calls=[])
  153. if tool_calls:
  154. assistant_message.tool_calls = [
  155. AssistantPromptMessage.ToolCall(
  156. id=tool_call[0],
  157. type="function",
  158. function=AssistantPromptMessage.ToolCall.ToolCallFunction(
  159. name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
  160. ),
  161. )
  162. for tool_call in tool_calls
  163. ]
  164. else:
  165. assistant_message.content = response
  166. self._current_thoughts.append(assistant_message)
  167. # save thought
  168. self.save_agent_thought(
  169. agent_thought=agent_thought,
  170. tool_name=tool_call_names,
  171. tool_input=tool_call_inputs,
  172. thought=response,
  173. tool_invoke_meta=None,
  174. observation=None,
  175. answer=response,
  176. messages_ids=[],
  177. llm_usage=current_llm_usage,
  178. )
  179. self.queue_manager.publish(
  180. QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
  181. )
  182. final_answer += response + "\n"
  183. # call tools
  184. tool_responses = []
  185. for tool_call_id, tool_call_name, tool_call_args in tool_calls:
  186. tool_instance = tool_instances.get(tool_call_name)
  187. if not tool_instance:
  188. tool_response = {
  189. "tool_call_id": tool_call_id,
  190. "tool_call_name": tool_call_name,
  191. "tool_response": f"there is not a tool named {tool_call_name}",
  192. "meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
  193. }
  194. else:
  195. # invoke tool
  196. tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
  197. tool=tool_instance,
  198. tool_parameters=tool_call_args,
  199. user_id=self.user_id,
  200. tenant_id=self.tenant_id,
  201. message=self.message,
  202. invoke_from=self.application_generate_entity.invoke_from,
  203. agent_tool_callback=self.agent_callback,
  204. trace_manager=trace_manager,
  205. )
  206. # publish files
  207. for message_file_id, save_as in message_files:
  208. # publish message file
  209. self.queue_manager.publish(
  210. QueueMessageFileEvent(message_file_id=message_file_id.id), PublishFrom.APPLICATION_MANAGER
  211. )
  212. # add message file ids
  213. message_file_ids.append(message_file_id.id)
  214. tool_response = {
  215. "tool_call_id": tool_call_id,
  216. "tool_call_name": tool_call_name,
  217. "tool_response": tool_invoke_response,
  218. "meta": tool_invoke_meta.to_dict(),
  219. }
  220. tool_responses.append(tool_response)
  221. if tool_response["tool_response"] is not None:
  222. self._current_thoughts.append(
  223. ToolPromptMessage(
  224. content=tool_response["tool_response"],
  225. tool_call_id=tool_call_id,
  226. name=tool_call_name,
  227. )
  228. )
  229. if len(tool_responses) > 0:
  230. # save agent thought
  231. self.save_agent_thought(
  232. agent_thought=agent_thought,
  233. tool_name=None,
  234. tool_input=None,
  235. thought=None,
  236. tool_invoke_meta={
  237. tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
  238. },
  239. observation={
  240. tool_response["tool_call_name"]: tool_response["tool_response"]
  241. for tool_response in tool_responses
  242. },
  243. answer=None,
  244. messages_ids=message_file_ids,
  245. )
  246. self.queue_manager.publish(
  247. QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
  248. )
  249. # update prompt tool
  250. for prompt_tool in prompt_messages_tools:
  251. self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
  252. iteration_step += 1
  253. # publish end event
  254. self.queue_manager.publish(
  255. QueueMessageEndEvent(
  256. llm_result=LLMResult(
  257. model=model_instance.model,
  258. prompt_messages=prompt_messages,
  259. message=AssistantPromptMessage(content=final_answer),
  260. usage=llm_usage["usage"] or LLMUsage.empty_usage(),
  261. system_fingerprint="",
  262. )
  263. ),
  264. PublishFrom.APPLICATION_MANAGER,
  265. )
  266. def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
  267. """
  268. Check if there is any tool call in llm result chunk
  269. """
  270. if llm_result_chunk.delta.message.tool_calls:
  271. return True
  272. return False
  273. def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
  274. """
  275. Check if there is any blocking tool call in llm result
  276. """
  277. if llm_result.message.tool_calls:
  278. return True
  279. return False
  280. def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
  281. """
  282. Extract tool calls from llm result chunk
  283. Returns:
  284. List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
  285. """
  286. tool_calls = []
  287. for prompt_message in llm_result_chunk.delta.message.tool_calls:
  288. args = {}
  289. if prompt_message.function.arguments != "":
  290. args = json.loads(prompt_message.function.arguments)
  291. tool_calls.append(
  292. (
  293. prompt_message.id,
  294. prompt_message.function.name,
  295. args,
  296. )
  297. )
  298. return tool_calls
  299. def extract_blocking_tool_calls(self, llm_result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
  300. """
  301. Extract blocking tool calls from llm result
  302. Returns:
  303. List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
  304. """
  305. tool_calls = []
  306. for prompt_message in llm_result.message.tool_calls:
  307. args = {}
  308. if prompt_message.function.arguments != "":
  309. args = json.loads(prompt_message.function.arguments)
  310. tool_calls.append(
  311. (
  312. prompt_message.id,
  313. prompt_message.function.name,
  314. args,
  315. )
  316. )
  317. return tool_calls
  318. def _init_system_message(
  319. self, prompt_template: str, prompt_messages: list[PromptMessage]
  320. ) -> list[PromptMessage]:
  321. """
  322. Initialize system message
  323. """
  324. if not prompt_messages and prompt_template:
  325. return [
  326. SystemPromptMessage(content=prompt_template),
  327. ]
  328. if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
  329. prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
  330. return prompt_messages
  331. def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
  332. """
  333. Organize user query
  334. """
  335. if self.files:
  336. prompt_message_contents: list[PromptMessageContent] = [TextPromptMessageContent(data=query)]
  337. for file_obj in self.files:
  338. prompt_message_contents.append(file_obj.prompt_message_content)
  339. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  340. else:
  341. prompt_messages.append(UserPromptMessage(content=query))
  342. return prompt_messages
  343. def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
  344. """
  345. As for now, gpt supports both fc and vision at the first iteration.
  346. We need to remove the image messages from the prompt messages at the first iteration.
  347. """
  348. prompt_messages = deepcopy(prompt_messages)
  349. for prompt_message in prompt_messages:
  350. if isinstance(prompt_message, UserPromptMessage):
  351. if isinstance(prompt_message.content, list):
  352. prompt_message.content = "\n".join(
  353. [
  354. content.data
  355. if content.type == PromptMessageContentType.TEXT
  356. else "[image]"
  357. if content.type == PromptMessageContentType.IMAGE
  358. else "[file]"
  359. for content in prompt_message.content
  360. ]
  361. )
  362. return prompt_messages
  363. def _organize_prompt_messages(self):
  364. prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
  365. self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
  366. query_prompt_messages = self._organize_user_query(self.query, [])
  367. self.history_prompt_messages = AgentHistoryPromptTransform(
  368. model_config=self.model_config,
  369. prompt_messages=[*query_prompt_messages, *self._current_thoughts],
  370. history_messages=self.history_prompt_messages,
  371. memory=self.memory,
  372. ).get_prompt()
  373. prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
  374. if len(self._current_thoughts) != 0:
  375. # clear messages after the first iteration
  376. prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
  377. return prompt_messages