| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291 | 
							- import os
 
- from collections.abc import Generator
 
- import pytest
 
- from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
 
- from core.model_runtime.entities.message_entities import (
 
-     AssistantPromptMessage,
 
-     PromptMessageTool,
 
-     SystemPromptMessage,
 
-     TextPromptMessageContent,
 
-     UserPromptMessage,
 
- )
 
- from core.model_runtime.entities.model_entities import AIModelEntity
 
- from core.model_runtime.errors.validate import CredentialsValidateFailedError
 
- from core.model_runtime.model_providers.chatglm.llm.llm import ChatGLMLargeLanguageModel
 
- from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
 
- def test_predefined_models():
 
-     model = ChatGLMLargeLanguageModel()
 
-     model_schemas = model.predefined_models()
 
-     assert len(model_schemas) >= 1
 
-     assert isinstance(model_schemas[0], AIModelEntity)
 
- @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
 
- def test_validate_credentials_for_chat_model(setup_openai_mock):
 
-     model = ChatGLMLargeLanguageModel()
 
-     with pytest.raises(CredentialsValidateFailedError):
 
-         model.validate_credentials(
 
-             model='chatglm2-6b',
 
-             credentials={
 
-                 'api_base': 'invalid_key'
 
-             }
 
-         )
 
-     model.validate_credentials(
 
-         model='chatglm2-6b',
 
-         credentials={
 
-             'api_base': os.environ.get('CHATGLM_API_BASE')
 
-         }
 
-     )
 
- @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
 
- def test_invoke_model(setup_openai_mock):
 
-     model = ChatGLMLargeLanguageModel()
 
-     response = model.invoke(
 
-         model='chatglm2-6b',
 
-         credentials={
 
-             'api_base': os.environ.get('CHATGLM_API_BASE')
 
-         },
 
-         prompt_messages=[
 
-             SystemPromptMessage(
 
-                 content='You are a helpful AI assistant.',
 
-             ),
 
-             UserPromptMessage(
 
-                 content='Hello World!'
 
-             )
 
-         ],
 
-         model_parameters={
 
-             'temperature': 0.7,
 
-             'top_p': 1.0,
 
-         },
 
-         stop=['you'],
 
-         user="abc-123",
 
-         stream=False
 
-     )
 
-     assert isinstance(response, LLMResult)
 
-     assert len(response.message.content) > 0
 
-     assert response.usage.total_tokens > 0
 
- @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
 
- def test_invoke_stream_model(setup_openai_mock):
 
-     model = ChatGLMLargeLanguageModel()
 
-     response = model.invoke(
 
-         model='chatglm2-6b',
 
-         credentials={
 
-             'api_base': os.environ.get('CHATGLM_API_BASE')
 
-         },
 
-         prompt_messages=[
 
-             SystemPromptMessage(
 
-                 content='You are a helpful AI assistant.',
 
-             ),
 
-             UserPromptMessage(
 
-                 content='Hello World!'
 
-             )
 
-         ],
 
-         model_parameters={
 
-             'temperature': 0.7,
 
-             'top_p': 1.0,
 
-         },
 
-         stop=['you'],
 
-         stream=True,
 
-         user="abc-123"
 
-     )
 
-     assert isinstance(response, Generator)
 
-     for chunk in response:
 
-         assert isinstance(chunk, LLMResultChunk)
 
-         assert isinstance(chunk.delta, LLMResultChunkDelta)
 
-         assert isinstance(chunk.delta.message, AssistantPromptMessage)
 
-         assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
 
- @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
 
- def test_invoke_stream_model_with_functions(setup_openai_mock):
 
-     model = ChatGLMLargeLanguageModel()
 
-     response = model.invoke(
 
-         model='chatglm3-6b',
 
-         credentials={
 
-             'api_base': os.environ.get('CHATGLM_API_BASE')
 
-         },
 
-         prompt_messages=[
 
-             SystemPromptMessage(
 
-                 content='你是一个天气机器人,你不知道今天的天气怎么样,你需要通过调用一个函数来获取天气信息。'
 
-             ),
 
-             UserPromptMessage(
 
-                 content='波士顿天气如何?'
 
-             )
 
-         ],
 
-         model_parameters={
 
-             'temperature': 0,
 
-             'top_p': 1.0,
 
-         },
 
-         stop=['you'],
 
-         user='abc-123',
 
-         stream=True,
 
-         tools=[
 
-             PromptMessageTool(
 
-                 name='get_current_weather',
 
-                 description='Get the current weather in a given location',
 
-                 parameters={
 
-                     "type": "object",
 
-                     "properties": {
 
-                         "location": {
 
-                         "type": "string",
 
-                             "description": "The city and state e.g. San Francisco, CA"
 
-                         },
 
-                         "unit": {
 
-                             "type": "string",
 
-                             "enum": ["celsius", "fahrenheit"]
 
-                         }
 
-                     },
 
-                     "required": [
 
-                         "location"
 
-                     ]
 
-                 }
 
-             )
 
-         ]
 
-     )
 
-     assert isinstance(response, Generator)
 
-     
 
-     call: LLMResultChunk = None
 
-     chunks = []
 
-     for chunk in response:
 
-         chunks.append(chunk)
 
-         assert isinstance(chunk, LLMResultChunk)
 
-         assert isinstance(chunk.delta, LLMResultChunkDelta)
 
-         assert isinstance(chunk.delta.message, AssistantPromptMessage)
 
-         assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
 
-         if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0:
 
-             call = chunk
 
-             break
 
-     assert call is not None
 
-     assert call.delta.message.tool_calls[0].function.name == 'get_current_weather'
 
- @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
 
- def test_invoke_model_with_functions(setup_openai_mock):
 
-     model = ChatGLMLargeLanguageModel()
 
-     response = model.invoke(
 
-         model='chatglm3-6b',
 
-         credentials={
 
-             'api_base': os.environ.get('CHATGLM_API_BASE')
 
-         },
 
-         prompt_messages=[
 
-             UserPromptMessage(
 
-                 content='What is the weather like in San Francisco?'
 
-             )
 
-         ],
 
-         model_parameters={
 
-             'temperature': 0.7,
 
-             'top_p': 1.0,
 
-         },
 
-         stop=['you'],
 
-         user='abc-123',
 
-         stream=False,
 
-         tools=[
 
-             PromptMessageTool(
 
-                 name='get_current_weather',
 
-                 description='Get the current weather in a given location',
 
-                 parameters={
 
-                     "type": "object",
 
-                     "properties": {
 
-                         "location": {
 
-                         "type": "string",
 
-                             "description": "The city and state e.g. San Francisco, CA"
 
-                         },
 
-                         "unit": {
 
-                             "type": "string",
 
-                             "enum": [
 
-                                 "c",
 
-                                 "f"
 
-                             ]
 
-                         }
 
-                     },
 
-                     "required": [
 
-                         "location"
 
-                     ]
 
-                 }
 
-             )
 
-         ]
 
-     )
 
-     assert isinstance(response, LLMResult)
 
-     assert len(response.message.content) > 0
 
-     assert response.usage.total_tokens > 0
 
-     assert response.message.tool_calls[0].function.name == 'get_current_weather'
 
- def test_get_num_tokens():
 
-     model = ChatGLMLargeLanguageModel()
 
-     num_tokens = model.get_num_tokens(
 
-         model='chatglm2-6b',
 
-         credentials={
 
-             'api_base': os.environ.get('CHATGLM_API_BASE')
 
-         },
 
-         prompt_messages=[
 
-             SystemPromptMessage(
 
-                 content='You are a helpful AI assistant.',
 
-             ),
 
-             UserPromptMessage(
 
-                 content='Hello World!'
 
-             )
 
-         ],
 
-         tools=[
 
-             PromptMessageTool(
 
-                 name='get_current_weather',
 
-                 description='Get the current weather in a given location',
 
-                 parameters={
 
-                     "type": "object",
 
-                     "properties": {
 
-                         "location": {
 
-                         "type": "string",
 
-                             "description": "The city and state e.g. San Francisco, CA"
 
-                         },
 
-                         "unit": {
 
-                             "type": "string",
 
-                             "enum": [
 
-                                 "c",
 
-                                 "f"
 
-                             ]
 
-                         }
 
-                     },
 
-                     "required": [
 
-                         "location"
 
-                     ]
 
-                 }
 
-             )
 
-         ]
 
-     )
 
-     assert isinstance(num_tokens, int)
 
-     assert num_tokens == 77
 
-     num_tokens = model.get_num_tokens(
 
-         model='chatglm2-6b',
 
-         credentials={
 
-             'api_base': os.environ.get('CHATGLM_API_BASE')
 
-         },
 
-         prompt_messages=[
 
-             SystemPromptMessage(
 
-                 content='You are a helpful AI assistant.',
 
-             ),
 
-             UserPromptMessage(
 
-                 content='Hello World!'
 
-             )
 
-         ],
 
-     )
 
-     assert isinstance(num_tokens, int)
 
-     assert num_tokens == 21
 
 
  |