| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 | 
							
- from core.model_runtime.entities.model_entities import DefaultParameterName
 
- PARAMETER_RULE_TEMPLATE: dict[DefaultParameterName, dict] = {
 
-     DefaultParameterName.TEMPERATURE: {
 
-         'label': {
 
-             'en_US': 'Temperature',
 
-             'zh_Hans': '温度',
 
-         },
 
-         'type': 'float',
 
-         'help': {
 
-             'en_US': 'Controls randomness. Lower temperature results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive. Higher temperature results in more random completions.',
 
-             'zh_Hans': '温度控制随机性。较低的温度会导致较少的随机完成。随着温度接近零,模型将变得确定性和重复性。较高的温度会导致更多的随机完成。',
 
-         },
 
-         'required': False,
 
-         'default': 0.0,
 
-         'min': 0.0,
 
-         'max': 1.0,
 
-         'precision': 2,
 
-     },
 
-     DefaultParameterName.TOP_P: {
 
-         'label': {
 
-             'en_US': 'Top P',
 
-             'zh_Hans': 'Top P',
 
-         },
 
-         'type': 'float',
 
-         'help': {
 
-             'en_US': 'Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options are considered.',
 
-             'zh_Hans': '通过核心采样控制多样性:0.5表示考虑了一半的所有可能性加权选项。',
 
-         },
 
-         'required': False,
 
-         'default': 1.0,
 
-         'min': 0.0,
 
-         'max': 1.0,
 
-         'precision': 2,
 
-     },
 
-     DefaultParameterName.PRESENCE_PENALTY: {
 
-         'label': {
 
-             'en_US': 'Presence Penalty',
 
-             'zh_Hans': '存在惩罚',
 
-         },
 
-         'type': 'float',
 
-         'help': {
 
-             'en_US': 'Applies a penalty to the log-probability of tokens already in the text.',
 
-             'zh_Hans': '对文本中已有的标记的对数概率施加惩罚。',
 
-         },
 
-         'required': False,
 
-         'default': 0.0,
 
-         'min': 0.0,
 
-         'max': 1.0,
 
-         'precision': 2,
 
-     },
 
-     DefaultParameterName.FREQUENCY_PENALTY: {
 
-         'label': {
 
-             'en_US': 'Frequency Penalty',
 
-             'zh_Hans': '频率惩罚',
 
-         },
 
-         'type': 'float',
 
-         'help': {
 
-             'en_US': 'Applies a penalty to the log-probability of tokens that appear in the text.',
 
-             'zh_Hans': '对文本中出现的标记的对数概率施加惩罚。',
 
-         },
 
-         'required': False,
 
-         'default': 0.0,
 
-         'min': 0.0,
 
-         'max': 1.0,
 
-         'precision': 2,
 
-     },
 
-     DefaultParameterName.MAX_TOKENS: {
 
-         'label': {
 
-             'en_US': 'Max Tokens',
 
-             'zh_Hans': '最大标记',
 
-         },
 
-         'type': 'int',
 
-         'help': {
 
-             'en_US': 'Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.',
 
-             'zh_Hans': '指定生成结果长度的上限。如果生成结果截断,可以调大该参数。',
 
-         },
 
-         'required': False,
 
-         'default': 64,
 
-         'min': 1,
 
-         'max': 2048,
 
-         'precision': 0,
 
-     },
 
-     DefaultParameterName.RESPONSE_FORMAT: {
 
-         'label': {
 
-             'en_US': 'Response Format',
 
-             'zh_Hans': '回复格式',
 
-         },
 
-         'type': 'string',
 
-         'help': {
 
-             'en_US': 'Set a response format, ensure the output from llm is a valid code block as possible, such as JSON, XML, etc.',
 
-             'zh_Hans': '设置一个返回格式,确保llm的输出尽可能是有效的代码块,如JSON、XML等',
 
-         },
 
-         'required': False,
 
-         'options': ['JSON', 'XML'],
 
-     }
 
- }
 
 
  |