| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 | import jsonfrom typing import Optional, Unionfrom core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfigManagerfrom core.app.entities.app_invoke_entities import InvokeFromfrom core.llm_generator.llm_generator import LLMGeneratorfrom core.memory.token_buffer_memory import TokenBufferMemoryfrom core.model_manager import ModelManagerfrom core.model_runtime.entities.model_entities import ModelTypefrom core.ops.ops_trace_manager import TraceQueueManager, TraceTask, TraceTaskNamefrom core.ops.utils import measure_timefrom extensions.ext_database import dbfrom libs.infinite_scroll_pagination import InfiniteScrollPaginationfrom models.account import Accountfrom models.model import App, AppMode, AppModelConfig, EndUser, Message, MessageFeedbackfrom services.conversation_service import ConversationServicefrom services.errors.conversation import ConversationCompletedError, ConversationNotExistsErrorfrom services.errors.message import (    FirstMessageNotExistsError,    LastMessageNotExistsError,    MessageNotExistsError,    SuggestedQuestionsAfterAnswerDisabledError,)from services.workflow_service import WorkflowServiceclass MessageService:    @classmethod    def pagination_by_first_id(cls, app_model: App, user: Optional[Union[Account, EndUser]],                               conversation_id: str, first_id: Optional[str], limit: int) -> InfiniteScrollPagination:        if not user:            return InfiniteScrollPagination(data=[], limit=limit, has_more=False)        if not conversation_id:            return InfiniteScrollPagination(data=[], limit=limit, has_more=False)        conversation = ConversationService.get_conversation(            app_model=app_model,            user=user,            conversation_id=conversation_id        )        if first_id:            first_message = db.session.query(Message) \                .filter(Message.conversation_id == conversation.id, Message.id == first_id).first()            if not first_message:                raise FirstMessageNotExistsError()            history_messages = db.session.query(Message).filter(                Message.conversation_id == conversation.id,                Message.created_at < first_message.created_at,                Message.id != first_message.id            ) \                .order_by(Message.created_at.desc()).limit(limit).all()        else:            history_messages = db.session.query(Message).filter(Message.conversation_id == conversation.id) \                .order_by(Message.created_at.desc()).limit(limit).all()        has_more = False        if len(history_messages) == limit:            current_page_first_message = history_messages[-1]            rest_count = db.session.query(Message).filter(                Message.conversation_id == conversation.id,                Message.created_at < current_page_first_message.created_at,                Message.id != current_page_first_message.id            ).count()            if rest_count > 0:                has_more = True        history_messages = list(reversed(history_messages))        return InfiniteScrollPagination(            data=history_messages,            limit=limit,            has_more=has_more        )    @classmethod    def pagination_by_last_id(cls, app_model: App, user: Optional[Union[Account, EndUser]],                              last_id: Optional[str], limit: int, conversation_id: Optional[str] = None,                              include_ids: Optional[list] = None) -> InfiniteScrollPagination:        if not user:            return InfiniteScrollPagination(data=[], limit=limit, has_more=False)        base_query = db.session.query(Message)        if conversation_id is not None:            conversation = ConversationService.get_conversation(                app_model=app_model,                user=user,                conversation_id=conversation_id            )            base_query = base_query.filter(Message.conversation_id == conversation.id)        if include_ids is not None:            base_query = base_query.filter(Message.id.in_(include_ids))        if last_id:            last_message = base_query.filter(Message.id == last_id).first()            if not last_message:                raise LastMessageNotExistsError()            history_messages = base_query.filter(                Message.created_at < last_message.created_at,                Message.id != last_message.id            ).order_by(Message.created_at.desc()).limit(limit).all()        else:            history_messages = base_query.order_by(Message.created_at.desc()).limit(limit).all()        has_more = False        if len(history_messages) == limit:            current_page_first_message = history_messages[-1]            rest_count = base_query.filter(                Message.created_at < current_page_first_message.created_at,                Message.id != current_page_first_message.id            ).count()            if rest_count > 0:                has_more = True        return InfiniteScrollPagination(            data=history_messages,            limit=limit,            has_more=has_more        )    @classmethod    def create_feedback(cls, app_model: App, message_id: str, user: Optional[Union[Account, EndUser]],                        rating: Optional[str]) -> MessageFeedback:        if not user:            raise ValueError('user cannot be None')        message = cls.get_message(            app_model=app_model,            user=user,            message_id=message_id        )        feedback = message.user_feedback if isinstance(user, EndUser) else message.admin_feedback        if not rating and feedback:            db.session.delete(feedback)        elif rating and feedback:            feedback.rating = rating        elif not rating and not feedback:            raise ValueError('rating cannot be None when feedback not exists')        else:            feedback = MessageFeedback(                app_id=app_model.id,                conversation_id=message.conversation_id,                message_id=message.id,                rating=rating,                from_source=('user' if isinstance(user, EndUser) else 'admin'),                from_end_user_id=(user.id if isinstance(user, EndUser) else None),                from_account_id=(user.id if isinstance(user, Account) else None),            )            db.session.add(feedback)        db.session.commit()        return feedback    @classmethod    def get_message(cls, app_model: App, user: Optional[Union[Account, EndUser]], message_id: str):        message = db.session.query(Message).filter(            Message.id == message_id,            Message.app_id == app_model.id,            Message.from_source == ('api' if isinstance(user, EndUser) else 'console'),            Message.from_end_user_id == (user.id if isinstance(user, EndUser) else None),            Message.from_account_id == (user.id if isinstance(user, Account) else None),        ).first()        if not message:            raise MessageNotExistsError()        return message    @classmethod    def get_suggested_questions_after_answer(cls, app_model: App, user: Optional[Union[Account, EndUser]],                                             message_id: str, invoke_from: InvokeFrom) -> list[Message]:        if not user:            raise ValueError('user cannot be None')        message = cls.get_message(            app_model=app_model,            user=user,            message_id=message_id        )        conversation = ConversationService.get_conversation(            app_model=app_model,            conversation_id=message.conversation_id,            user=user        )        if not conversation:            raise ConversationNotExistsError()        if conversation.status != 'normal':            raise ConversationCompletedError()        model_manager = ModelManager()        if app_model.mode == AppMode.ADVANCED_CHAT.value:            workflow_service = WorkflowService()            if invoke_from == InvokeFrom.DEBUGGER:                workflow = workflow_service.get_draft_workflow(app_model=app_model)            else:                workflow = workflow_service.get_published_workflow(app_model=app_model)            if workflow is None:                return []            app_config = AdvancedChatAppConfigManager.get_app_config(                app_model=app_model,                workflow=workflow            )            if not app_config.additional_features.suggested_questions_after_answer:                raise SuggestedQuestionsAfterAnswerDisabledError()            model_instance = model_manager.get_default_model_instance(                tenant_id=app_model.tenant_id,                model_type=ModelType.LLM            )        else:            if not conversation.override_model_configs:                app_model_config = db.session.query(AppModelConfig).filter(                    AppModelConfig.id == conversation.app_model_config_id,                    AppModelConfig.app_id == app_model.id                ).first()            else:                conversation_override_model_configs = json.loads(conversation.override_model_configs)                app_model_config = AppModelConfig(                    id=conversation.app_model_config_id,                    app_id=app_model.id,                )                app_model_config = app_model_config.from_model_config_dict(conversation_override_model_configs)            suggested_questions_after_answer = app_model_config.suggested_questions_after_answer_dict            if suggested_questions_after_answer.get("enabled", False) is False:                raise SuggestedQuestionsAfterAnswerDisabledError()            model_instance = model_manager.get_model_instance(                tenant_id=app_model.tenant_id,                provider=app_model_config.model_dict['provider'],                model_type=ModelType.LLM,                model=app_model_config.model_dict['name']            )        # get memory of conversation (read-only)        memory = TokenBufferMemory(            conversation=conversation,            model_instance=model_instance        )        histories = memory.get_history_prompt_text(            max_token_limit=3000,            message_limit=3,        )        with measure_time() as timer:            questions = LLMGenerator.generate_suggested_questions_after_answer(                tenant_id=app_model.tenant_id,                histories=histories            )        # get tracing instance        trace_manager = TraceQueueManager(app_id=app_model.id)        trace_manager.add_trace_task(            TraceTask(                TraceTaskName.SUGGESTED_QUESTION_TRACE,                message_id=message_id,                suggested_question=questions,                timer=timer            )        )        return questions
 |