| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627 | import datetimeimport jsonimport loggingimport randomimport timeimport uuidfrom typing import Optionalfrom flask_login import current_userfrom sqlalchemy import funcfrom configs import dify_configfrom core.errors.error import LLMBadRequestError, ProviderTokenNotInitErrorfrom core.model_manager import ModelManagerfrom core.model_runtime.entities.model_entities import ModelTypefrom core.rag.datasource.keyword.keyword_factory import Keywordfrom core.rag.models.document import Document as RAGDocumentfrom core.rag.retrieval.retrival_methods import RetrievalMethodfrom events.dataset_event import dataset_was_deletedfrom events.document_event import document_was_deletedfrom extensions.ext_database import dbfrom extensions.ext_redis import redis_clientfrom libs import helperfrom models.account import Account, TenantAccountRolefrom models.dataset import (    AppDatasetJoin,    Dataset,    DatasetCollectionBinding,    DatasetPermission,    DatasetProcessRule,    DatasetQuery,    Document,    DocumentSegment,)from models.model import UploadFilefrom models.source import DataSourceOauthBindingfrom services.errors.account import NoPermissionErrorfrom services.errors.dataset import DatasetNameDuplicateErrorfrom services.errors.document import DocumentIndexingErrorfrom services.errors.file import FileNotExistsErrorfrom services.feature_service import FeatureModel, FeatureServicefrom services.tag_service import TagServicefrom services.vector_service import VectorServicefrom tasks.clean_notion_document_task import clean_notion_document_taskfrom tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_taskfrom tasks.delete_segment_from_index_task import delete_segment_from_index_taskfrom tasks.disable_segment_from_index_task import disable_segment_from_index_taskfrom tasks.document_indexing_task import document_indexing_taskfrom tasks.document_indexing_update_task import document_indexing_update_taskfrom tasks.duplicate_document_indexing_task import duplicate_document_indexing_taskfrom tasks.recover_document_indexing_task import recover_document_indexing_taskfrom tasks.retry_document_indexing_task import retry_document_indexing_taskfrom tasks.sync_website_document_indexing_task import sync_website_document_indexing_taskclass DatasetService:    @staticmethod    def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):        query = Dataset.query.filter(Dataset.provider == provider, Dataset.tenant_id == tenant_id).order_by(            Dataset.created_at.desc()        )        if user:            # get permitted dataset ids            dataset_permission = DatasetPermission.query.filter_by(                account_id=user.id,                tenant_id=tenant_id            ).all()            permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None            if user.current_role == TenantAccountRole.DATASET_OPERATOR:                # only show datasets that the user has permission to access                if permitted_dataset_ids:                    query = query.filter(Dataset.id.in_(permitted_dataset_ids))                else:                    return [], 0            else:                # show all datasets that the user has permission to access                if permitted_dataset_ids:                    query = query.filter(                        db.or_(                            Dataset.permission == 'all_team_members',                            db.and_(Dataset.permission == 'only_me', Dataset.created_by == user.id),                            db.and_(Dataset.permission == 'partial_members', Dataset.id.in_(permitted_dataset_ids))                        )                    )                else:                    query = query.filter(                        db.or_(                            Dataset.permission == 'all_team_members',                            db.and_(Dataset.permission == 'only_me', Dataset.created_by == user.id)                        )                    )        else:            # if no user, only show datasets that are shared with all team members            query = query.filter(Dataset.permission == 'all_team_members')        if search:            query = query.filter(Dataset.name.ilike(f'%{search}%'))        if tag_ids:            target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids)            if target_ids:                query = query.filter(Dataset.id.in_(target_ids))            else:                return [], 0        datasets = query.paginate(            page=page,            per_page=per_page,            max_per_page=100,            error_out=False        )        return datasets.items, datasets.total    @staticmethod    def get_process_rules(dataset_id):        # get the latest process rule        dataset_process_rule = db.session.query(DatasetProcessRule). \            filter(DatasetProcessRule.dataset_id == dataset_id). \            order_by(DatasetProcessRule.created_at.desc()). \            limit(1). \            one_or_none()        if dataset_process_rule:            mode = dataset_process_rule.mode            rules = dataset_process_rule.rules_dict        else:            mode = DocumentService.DEFAULT_RULES['mode']            rules = DocumentService.DEFAULT_RULES['rules']        return {            'mode': mode,            'rules': rules        }    @staticmethod    def get_datasets_by_ids(ids, tenant_id):        datasets = Dataset.query.filter(            Dataset.id.in_(ids),            Dataset.tenant_id == tenant_id        ).paginate(            page=1, per_page=len(ids), max_per_page=len(ids), error_out=False        )        return datasets.items, datasets.total    @staticmethod    def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):        # check if dataset name already exists        if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():            raise DatasetNameDuplicateError(                f'Dataset with name {name} already exists.'            )        embedding_model = None        if indexing_technique == 'high_quality':            model_manager = ModelManager()            embedding_model = model_manager.get_default_model_instance(                tenant_id=tenant_id,                model_type=ModelType.TEXT_EMBEDDING            )        dataset = Dataset(name=name, indexing_technique=indexing_technique)        # dataset = Dataset(name=name, provider=provider, config=config)        dataset.created_by = account.id        dataset.updated_by = account.id        dataset.tenant_id = tenant_id        dataset.embedding_model_provider = embedding_model.provider if embedding_model else None        dataset.embedding_model = embedding_model.model if embedding_model else None        db.session.add(dataset)        db.session.commit()        return dataset    @staticmethod    def get_dataset(dataset_id):        return Dataset.query.filter_by(            id=dataset_id        ).first()    @staticmethod    def check_dataset_model_setting(dataset):        if dataset.indexing_technique == 'high_quality':            try:                model_manager = ModelManager()                model_manager.get_model_instance(                    tenant_id=dataset.tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model                )            except LLMBadRequestError:                raise ValueError(                    "No Embedding Model available. Please configure a valid provider "                    "in the Settings -> Model Provider."                )            except ProviderTokenNotInitError as ex:                raise ValueError(                    f"The dataset in unavailable, due to: "                    f"{ex.description}"                )    @staticmethod    def update_dataset(dataset_id, data, user):        data.pop('partial_member_list', None)        filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}        dataset = DatasetService.get_dataset(dataset_id)        DatasetService.check_dataset_permission(dataset, user)        action = None        if dataset.indexing_technique != data['indexing_technique']:            # if update indexing_technique            if data['indexing_technique'] == 'economy':                action = 'remove'                filtered_data['embedding_model'] = None                filtered_data['embedding_model_provider'] = None                filtered_data['collection_binding_id'] = None            elif data['indexing_technique'] == 'high_quality':                action = 'add'                # get embedding model setting                try:                    model_manager = ModelManager()                    embedding_model = model_manager.get_model_instance(                        tenant_id=current_user.current_tenant_id,                        provider=data['embedding_model_provider'],                        model_type=ModelType.TEXT_EMBEDDING,                        model=data['embedding_model']                    )                    filtered_data['embedding_model'] = embedding_model.model                    filtered_data['embedding_model_provider'] = embedding_model.provider                    dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                        embedding_model.provider,                        embedding_model.model                    )                    filtered_data['collection_binding_id'] = dataset_collection_binding.id                except LLMBadRequestError:                    raise ValueError(                        "No Embedding Model available. Please configure a valid provider "                        "in the Settings -> Model Provider."                    )                except ProviderTokenNotInitError as ex:                    raise ValueError(ex.description)        else:            if data['embedding_model_provider'] != dataset.embedding_model_provider or \                data['embedding_model'] != dataset.embedding_model:                action = 'update'                try:                    model_manager = ModelManager()                    embedding_model = model_manager.get_model_instance(                        tenant_id=current_user.current_tenant_id,                        provider=data['embedding_model_provider'],                        model_type=ModelType.TEXT_EMBEDDING,                        model=data['embedding_model']                    )                    filtered_data['embedding_model'] = embedding_model.model                    filtered_data['embedding_model_provider'] = embedding_model.provider                    dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                        embedding_model.provider,                        embedding_model.model                    )                    filtered_data['collection_binding_id'] = dataset_collection_binding.id                except LLMBadRequestError:                    raise ValueError(                        "No Embedding Model available. Please configure a valid provider "                        "in the Settings -> Model Provider."                    )                except ProviderTokenNotInitError as ex:                    raise ValueError(ex.description)        filtered_data['updated_by'] = user.id        filtered_data['updated_at'] = datetime.datetime.now()        # update Retrieval model        filtered_data['retrieval_model'] = data['retrieval_model']        dataset.query.filter_by(id=dataset_id).update(filtered_data)        db.session.commit()        if action:            deal_dataset_vector_index_task.delay(dataset_id, action)        return dataset    @staticmethod    def delete_dataset(dataset_id, user):        dataset = DatasetService.get_dataset(dataset_id)        if dataset is None:            return False        DatasetService.check_dataset_permission(dataset, user)        dataset_was_deleted.send(dataset)        db.session.delete(dataset)        db.session.commit()        return True    @staticmethod    def dataset_use_check(dataset_id) -> bool:        count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()        if count > 0:            return True        return False    @staticmethod    def check_dataset_permission(dataset, user):        if dataset.tenant_id != user.current_tenant_id:            logging.debug(                f'User {user.id} does not have permission to access dataset {dataset.id}'            )            raise NoPermissionError(                'You do not have permission to access this dataset.'            )        if dataset.permission == 'only_me' and dataset.created_by != user.id:            logging.debug(                f'User {user.id} does not have permission to access dataset {dataset.id}'            )            raise NoPermissionError(                'You do not have permission to access this dataset.'            )        if dataset.permission == 'partial_members':            user_permission = DatasetPermission.query.filter_by(                dataset_id=dataset.id, account_id=user.id            ).first()            if not user_permission and dataset.tenant_id != user.current_tenant_id and dataset.created_by != user.id:                logging.debug(                    f'User {user.id} does not have permission to access dataset {dataset.id}'                )                raise NoPermissionError(                    'You do not have permission to access this dataset.'                )    @staticmethod    def check_dataset_operator_permission(user: Account = None, dataset: Dataset = None):        if dataset.permission == 'only_me':            if dataset.created_by != user.id:                raise NoPermissionError('You do not have permission to access this dataset.')        elif dataset.permission == 'partial_members':            if not any(                dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()            ):                raise NoPermissionError('You do not have permission to access this dataset.')    @staticmethod    def get_dataset_queries(dataset_id: str, page: int, per_page: int):        dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \            .order_by(db.desc(DatasetQuery.created_at)) \            .paginate(            page=page, per_page=per_page, max_per_page=100, error_out=False        )        return dataset_queries.items, dataset_queries.total    @staticmethod    def get_related_apps(dataset_id: str):        return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \            .order_by(db.desc(AppDatasetJoin.created_at)).all()class DocumentService:    DEFAULT_RULES = {        'mode': 'custom',        'rules': {            'pre_processing_rules': [                {'id': 'remove_extra_spaces', 'enabled': True},                {'id': 'remove_urls_emails', 'enabled': False}            ],            'segmentation': {                'delimiter': '\n',                'max_tokens': 500,                'chunk_overlap': 50            }        }    }    DOCUMENT_METADATA_SCHEMA = {        "book": {            "title": str,            "language": str,            "author": str,            "publisher": str,            "publication_date": str,            "isbn": str,            "category": str,        },        "web_page": {            "title": str,            "url": str,            "language": str,            "publish_date": str,            "author/publisher": str,            "topic/keywords": str,            "description": str,        },        "paper": {            "title": str,            "language": str,            "author": str,            "publish_date": str,            "journal/conference_name": str,            "volume/issue/page_numbers": str,            "doi": str,            "topic/keywords": str,            "abstract": str,        },        "social_media_post": {            "platform": str,            "author/username": str,            "publish_date": str,            "post_url": str,            "topic/tags": str,        },        "wikipedia_entry": {            "title": str,            "language": str,            "web_page_url": str,            "last_edit_date": str,            "editor/contributor": str,            "summary/introduction": str,        },        "personal_document": {            "title": str,            "author": str,            "creation_date": str,            "last_modified_date": str,            "document_type": str,            "tags/category": str,        },        "business_document": {            "title": str,            "author": str,            "creation_date": str,            "last_modified_date": str,            "document_type": str,            "department/team": str,        },        "im_chat_log": {            "chat_platform": str,            "chat_participants/group_name": str,            "start_date": str,            "end_date": str,            "summary": str,        },        "synced_from_notion": {            "title": str,            "language": str,            "author/creator": str,            "creation_date": str,            "last_modified_date": str,            "notion_page_link": str,            "category/tags": str,            "description": str,        },        "synced_from_github": {            "repository_name": str,            "repository_description": str,            "repository_owner/organization": str,            "code_filename": str,            "code_file_path": str,            "programming_language": str,            "github_link": str,            "open_source_license": str,            "commit_date": str,            "commit_author": str,        },        "others": dict    }    @staticmethod    def get_document(dataset_id: str, document_id: str) -> Optional[Document]:        document = db.session.query(Document).filter(            Document.id == document_id,            Document.dataset_id == dataset_id        ).first()        return document    @staticmethod    def get_document_by_id(document_id: str) -> Optional[Document]:        document = db.session.query(Document).filter(            Document.id == document_id        ).first()        return document    @staticmethod    def get_document_by_dataset_id(dataset_id: str) -> list[Document]:        documents = db.session.query(Document).filter(            Document.dataset_id == dataset_id,            Document.enabled == True        ).all()        return documents    @staticmethod    def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:        documents = db.session.query(Document).filter(            Document.dataset_id == dataset_id,            Document.indexing_status.in_(['error', 'paused'])        ).all()        return documents    @staticmethod    def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:        documents = db.session.query(Document).filter(            Document.batch == batch,            Document.dataset_id == dataset_id,            Document.tenant_id == current_user.current_tenant_id        ).all()        return documents    @staticmethod    def get_document_file_detail(file_id: str):        file_detail = db.session.query(UploadFile). \            filter(UploadFile.id == file_id). \            one_or_none()        return file_detail    @staticmethod    def check_archived(document):        if document.archived:            return True        else:            return False    @staticmethod    def delete_document(document):        # trigger document_was_deleted signal        document_was_deleted.send(document.id, dataset_id=document.dataset_id, doc_form=document.doc_form)        db.session.delete(document)        db.session.commit()    @staticmethod    def rename_document(dataset_id: str, document_id: str, name: str) -> Document:        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise ValueError('Dataset not found.')        document = DocumentService.get_document(dataset_id, document_id)        if not document:            raise ValueError('Document not found.')        if document.tenant_id != current_user.current_tenant_id:            raise ValueError('No permission.')        document.name = name        db.session.add(document)        db.session.commit()        return document    @staticmethod    def pause_document(document):        if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:            raise DocumentIndexingError()        # update document to be paused        document.is_paused = True        document.paused_by = current_user.id        document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)        db.session.add(document)        db.session.commit()        # set document paused flag        indexing_cache_key = 'document_{}_is_paused'.format(document.id)        redis_client.setnx(indexing_cache_key, "True")    @staticmethod    def recover_document(document):        if not document.is_paused:            raise DocumentIndexingError()        # update document to be recover        document.is_paused = False        document.paused_by = None        document.paused_at = None        db.session.add(document)        db.session.commit()        # delete paused flag        indexing_cache_key = 'document_{}_is_paused'.format(document.id)        redis_client.delete(indexing_cache_key)        # trigger async task        recover_document_indexing_task.delay(document.dataset_id, document.id)    @staticmethod    def retry_document(dataset_id: str, documents: list[Document]):        for document in documents:            # add retry flag            retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id)            cache_result = redis_client.get(retry_indexing_cache_key)            if cache_result is not None:                raise ValueError("Document is being retried, please try again later")            # retry document indexing            document.indexing_status = 'waiting'            db.session.add(document)            db.session.commit()            redis_client.setex(retry_indexing_cache_key, 600, 1)        # trigger async task        document_ids = [document.id for document in documents]        retry_document_indexing_task.delay(dataset_id, document_ids)    @staticmethod    def sync_website_document(dataset_id: str, document: Document):        # add sync flag        sync_indexing_cache_key = 'document_{}_is_sync'.format(document.id)        cache_result = redis_client.get(sync_indexing_cache_key)        if cache_result is not None:            raise ValueError("Document is being synced, please try again later")        # sync document indexing        document.indexing_status = 'waiting'        data_source_info = document.data_source_info_dict        data_source_info['mode'] = 'scrape'        document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)        db.session.add(document)        db.session.commit()        redis_client.setex(sync_indexing_cache_key, 600, 1)        sync_website_document_indexing_task.delay(dataset_id, document.id)    @staticmethod    def get_documents_position(dataset_id):        document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()        if document:            return document.position + 1        else:            return 1    @staticmethod    def save_document_with_dataset_id(        dataset: Dataset, document_data: dict,        account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,        created_from: str = 'web'    ):        # check document limit        features = FeatureService.get_features(current_user.current_tenant_id)        if features.billing.enabled:            if 'original_document_id' not in document_data or not document_data['original_document_id']:                count = 0                if document_data["data_source"]["type"] == "upload_file":                    upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                    count = len(upload_file_list)                elif document_data["data_source"]["type"] == "notion_import":                    notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                    for notion_info in notion_info_list:                        count = count + len(notion_info['pages'])                elif document_data["data_source"]["type"] == "website_crawl":                    website_info = document_data["data_source"]['info_list']['website_info_list']                    count = len(website_info['urls'])                batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)                if count > batch_upload_limit:                    raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")                DocumentService.check_documents_upload_quota(count, features)        # if dataset is empty, update dataset data_source_type        if not dataset.data_source_type:            dataset.data_source_type = document_data["data_source"]["type"]        if not dataset.indexing_technique:            if 'indexing_technique' not in document_data \                or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:                raise ValueError("Indexing technique is required")            dataset.indexing_technique = document_data["indexing_technique"]            if document_data["indexing_technique"] == 'high_quality':                model_manager = ModelManager()                embedding_model = model_manager.get_default_model_instance(                    tenant_id=current_user.current_tenant_id,                    model_type=ModelType.TEXT_EMBEDDING                )                dataset.embedding_model = embedding_model.model                dataset.embedding_model_provider = embedding_model.provider                dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                    embedding_model.provider,                    embedding_model.model                )                dataset.collection_binding_id = dataset_collection_binding.id                if not dataset.retrieval_model:                    default_retrieval_model = {                        'search_method': RetrievalMethod.SEMANTIC_SEARCH,                        'reranking_enable': False,                        'reranking_model': {                            'reranking_provider_name': '',                            'reranking_model_name': ''                        },                        'top_k': 2,                        'score_threshold_enabled': False                    }                    dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(                        'retrieval_model'                    ) else default_retrieval_model        documents = []        batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))        if document_data.get("original_document_id"):            document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)            documents.append(document)        else:            # save process rule            if not dataset_process_rule:                process_rule = document_data["process_rule"]                if process_rule["mode"] == "custom":                    dataset_process_rule = DatasetProcessRule(                        dataset_id=dataset.id,                        mode=process_rule["mode"],                        rules=json.dumps(process_rule["rules"]),                        created_by=account.id                    )                elif process_rule["mode"] == "automatic":                    dataset_process_rule = DatasetProcessRule(                        dataset_id=dataset.id,                        mode=process_rule["mode"],                        rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),                        created_by=account.id                    )                db.session.add(dataset_process_rule)                db.session.commit()            position = DocumentService.get_documents_position(dataset.id)            document_ids = []            duplicate_document_ids = []            if document_data["data_source"]["type"] == "upload_file":                upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                for file_id in upload_file_list:                    file = db.session.query(UploadFile).filter(                        UploadFile.tenant_id == dataset.tenant_id,                        UploadFile.id == file_id                    ).first()                    # raise error if file not found                    if not file:                        raise FileNotExistsError()                    file_name = file.name                    data_source_info = {                        "upload_file_id": file_id,                    }                    # check duplicate                    if document_data.get('duplicate', False):                        document = Document.query.filter_by(                            dataset_id=dataset.id,                            tenant_id=current_user.current_tenant_id,                            data_source_type='upload_file',                            enabled=True,                            name=file_name                        ).first()                        if document:                            document.dataset_process_rule_id = dataset_process_rule.id                            document.updated_at = datetime.datetime.utcnow()                            document.created_from = created_from                            document.doc_form = document_data['doc_form']                            document.doc_language = document_data['doc_language']                            document.data_source_info = json.dumps(data_source_info)                            document.batch = batch                            document.indexing_status = 'waiting'                            db.session.add(document)                            documents.append(document)                            duplicate_document_ids.append(document.id)                            continue                    document = DocumentService.build_document(                        dataset, dataset_process_rule.id,                        document_data["data_source"]["type"],                        document_data["doc_form"],                        document_data["doc_language"],                        data_source_info, created_from, position,                        account, file_name, batch                    )                    db.session.add(document)                    db.session.flush()                    document_ids.append(document.id)                    documents.append(document)                    position += 1            elif document_data["data_source"]["type"] == "notion_import":                notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                exist_page_ids = []                exist_document = {}                documents = Document.query.filter_by(                    dataset_id=dataset.id,                    tenant_id=current_user.current_tenant_id,                    data_source_type='notion_import',                    enabled=True                ).all()                if documents:                    for document in documents:                        data_source_info = json.loads(document.data_source_info)                        exist_page_ids.append(data_source_info['notion_page_id'])                        exist_document[data_source_info['notion_page_id']] = document.id                for notion_info in notion_info_list:                    workspace_id = notion_info['workspace_id']                    data_source_binding = DataSourceOauthBinding.query.filter(                        db.and_(                            DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,                            DataSourceOauthBinding.provider == 'notion',                            DataSourceOauthBinding.disabled == False,                            DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'                        )                    ).first()                    if not data_source_binding:                        raise ValueError('Data source binding not found.')                    for page in notion_info['pages']:                        if page['page_id'] not in exist_page_ids:                            data_source_info = {                                "notion_workspace_id": workspace_id,                                "notion_page_id": page['page_id'],                                "notion_page_icon": page['page_icon'],                                "type": page['type']                            }                            document = DocumentService.build_document(                                dataset, dataset_process_rule.id,                                document_data["data_source"]["type"],                                document_data["doc_form"],                                document_data["doc_language"],                                data_source_info, created_from, position,                                account, page['page_name'], batch                            )                            db.session.add(document)                            db.session.flush()                            document_ids.append(document.id)                            documents.append(document)                            position += 1                        else:                            exist_document.pop(page['page_id'])                # delete not selected documents                if len(exist_document) > 0:                    clean_notion_document_task.delay(list(exist_document.values()), dataset.id)            elif document_data["data_source"]["type"] == "website_crawl":                website_info = document_data["data_source"]['info_list']['website_info_list']                urls = website_info['urls']                for url in urls:                    data_source_info = {                        'url': url,                        'provider': website_info['provider'],                        'job_id': website_info['job_id'],                        'only_main_content': website_info.get('only_main_content', False),                        'mode': 'crawl',                    }                    document = DocumentService.build_document(                        dataset, dataset_process_rule.id,                        document_data["data_source"]["type"],                        document_data["doc_form"],                        document_data["doc_language"],                        data_source_info, created_from, position,                        account, url, batch                    )                    db.session.add(document)                    db.session.flush()                    document_ids.append(document.id)                    documents.append(document)                    position += 1            db.session.commit()            # trigger async task            if document_ids:                document_indexing_task.delay(dataset.id, document_ids)            if duplicate_document_ids:                duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)        return documents, batch    @staticmethod    def check_documents_upload_quota(count: int, features: FeatureModel):        can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size        if count > can_upload_size:            raise ValueError(                f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.'            )    @staticmethod    def build_document(        dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,        document_language: str, data_source_info: dict, created_from: str, position: int,        account: Account,        name: str, batch: str    ):        document = Document(            tenant_id=dataset.tenant_id,            dataset_id=dataset.id,            position=position,            data_source_type=data_source_type,            data_source_info=json.dumps(data_source_info),            dataset_process_rule_id=process_rule_id,            batch=batch,            name=name,            created_from=created_from,            created_by=account.id,            doc_form=document_form,            doc_language=document_language        )        return document    @staticmethod    def get_tenant_documents_count():        documents_count = Document.query.filter(            Document.completed_at.isnot(None),            Document.enabled == True,            Document.archived == False,            Document.tenant_id == current_user.current_tenant_id        ).count()        return documents_count    @staticmethod    def update_document_with_dataset_id(        dataset: Dataset, document_data: dict,        account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,        created_from: str = 'web'    ):        DatasetService.check_dataset_model_setting(dataset)        document = DocumentService.get_document(dataset.id, document_data["original_document_id"])        if document.display_status != 'available':            raise ValueError("Document is not available")        # update document name        if document_data.get('name'):            document.name = document_data['name']        # save process rule        if document_data.get('process_rule'):            process_rule = document_data["process_rule"]            if process_rule["mode"] == "custom":                dataset_process_rule = DatasetProcessRule(                    dataset_id=dataset.id,                    mode=process_rule["mode"],                    rules=json.dumps(process_rule["rules"]),                    created_by=account.id                )            elif process_rule["mode"] == "automatic":                dataset_process_rule = DatasetProcessRule(                    dataset_id=dataset.id,                    mode=process_rule["mode"],                    rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),                    created_by=account.id                )            db.session.add(dataset_process_rule)            db.session.commit()            document.dataset_process_rule_id = dataset_process_rule.id        # update document data source        if document_data.get('data_source'):            file_name = ''            data_source_info = {}            if document_data["data_source"]["type"] == "upload_file":                upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                for file_id in upload_file_list:                    file = db.session.query(UploadFile).filter(                        UploadFile.tenant_id == dataset.tenant_id,                        UploadFile.id == file_id                    ).first()                    # raise error if file not found                    if not file:                        raise FileNotExistsError()                    file_name = file.name                    data_source_info = {                        "upload_file_id": file_id,                    }            elif document_data["data_source"]["type"] == "notion_import":                notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                for notion_info in notion_info_list:                    workspace_id = notion_info['workspace_id']                    data_source_binding = DataSourceOauthBinding.query.filter(                        db.and_(                            DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,                            DataSourceOauthBinding.provider == 'notion',                            DataSourceOauthBinding.disabled == False,                            DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'                        )                    ).first()                    if not data_source_binding:                        raise ValueError('Data source binding not found.')                    for page in notion_info['pages']:                        data_source_info = {                            "notion_workspace_id": workspace_id,                            "notion_page_id": page['page_id'],                            "notion_page_icon": page['page_icon'],                            "type": page['type']                        }            elif document_data["data_source"]["type"] == "website_crawl":                website_info = document_data["data_source"]['info_list']['website_info_list']                urls = website_info['urls']                for url in urls:                    data_source_info = {                        'url': url,                        'provider': website_info['provider'],                        'job_id': website_info['job_id'],                        'only_main_content': website_info.get('only_main_content', False),                        'mode': 'crawl',                    }            document.data_source_type = document_data["data_source"]["type"]            document.data_source_info = json.dumps(data_source_info)            document.name = file_name        # update document to be waiting        document.indexing_status = 'waiting'        document.completed_at = None        document.processing_started_at = None        document.parsing_completed_at = None        document.cleaning_completed_at = None        document.splitting_completed_at = None        document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)        document.created_from = created_from        document.doc_form = document_data['doc_form']        db.session.add(document)        db.session.commit()        # update document segment        update_params = {            DocumentSegment.status: 're_segment'        }        DocumentSegment.query.filter_by(document_id=document.id).update(update_params)        db.session.commit()        # trigger async task        document_indexing_update_task.delay(document.dataset_id, document.id)        return document    @staticmethod    def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):        features = FeatureService.get_features(current_user.current_tenant_id)        if features.billing.enabled:            count = 0            if document_data["data_source"]["type"] == "upload_file":                upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                count = len(upload_file_list)            elif document_data["data_source"]["type"] == "notion_import":                notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                for notion_info in notion_info_list:                    count = count + len(notion_info['pages'])            elif document_data["data_source"]["type"] == "website_crawl":                website_info = document_data["data_source"]['info_list']['website_info_list']                count = len(website_info['urls'])            batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)            if count > batch_upload_limit:                raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")            DocumentService.check_documents_upload_quota(count, features)        embedding_model = None        dataset_collection_binding_id = None        retrieval_model = None        if document_data['indexing_technique'] == 'high_quality':            model_manager = ModelManager()            embedding_model = model_manager.get_default_model_instance(                tenant_id=current_user.current_tenant_id,                model_type=ModelType.TEXT_EMBEDDING            )            dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                embedding_model.provider,                embedding_model.model            )            dataset_collection_binding_id = dataset_collection_binding.id            if document_data.get('retrieval_model'):                retrieval_model = document_data['retrieval_model']            else:                default_retrieval_model = {                    'search_method': RetrievalMethod.SEMANTIC_SEARCH,                    'reranking_enable': False,                    'reranking_model': {                        'reranking_provider_name': '',                        'reranking_model_name': ''                    },                    'top_k': 2,                    'score_threshold_enabled': False                }                retrieval_model = default_retrieval_model        # save dataset        dataset = Dataset(            tenant_id=tenant_id,            name='',            data_source_type=document_data["data_source"]["type"],            indexing_technique=document_data["indexing_technique"],            created_by=account.id,            embedding_model=embedding_model.model if embedding_model else None,            embedding_model_provider=embedding_model.provider if embedding_model else None,            collection_binding_id=dataset_collection_binding_id,            retrieval_model=retrieval_model        )        db.session.add(dataset)        db.session.flush()        documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)        cut_length = 18        cut_name = documents[0].name[:cut_length]        dataset.name = cut_name + '...'        dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name        db.session.commit()        return dataset, documents, batch    @classmethod    def document_create_args_validate(cls, args: dict):        if 'original_document_id' not in args or not args['original_document_id']:            DocumentService.data_source_args_validate(args)            DocumentService.process_rule_args_validate(args)        else:            if ('data_source' not in args and not args['data_source']) \                and ('process_rule' not in args and not args['process_rule']):                raise ValueError("Data source or Process rule is required")            else:                if args.get('data_source'):                    DocumentService.data_source_args_validate(args)                if args.get('process_rule'):                    DocumentService.process_rule_args_validate(args)    @classmethod    def data_source_args_validate(cls, args: dict):        if 'data_source' not in args or not args['data_source']:            raise ValueError("Data source is required")        if not isinstance(args['data_source'], dict):            raise ValueError("Data source is invalid")        if 'type' not in args['data_source'] or not args['data_source']['type']:            raise ValueError("Data source type is required")        if args['data_source']['type'] not in Document.DATA_SOURCES:            raise ValueError("Data source type is invalid")        if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:            raise ValueError("Data source info is required")        if args['data_source']['type'] == 'upload_file':            if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][                'file_info_list']:                raise ValueError("File source info is required")        if args['data_source']['type'] == 'notion_import':            if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][                'notion_info_list']:                raise ValueError("Notion source info is required")        if args['data_source']['type'] == 'website_crawl':            if 'website_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][                'website_info_list']:                raise ValueError("Website source info is required")    @classmethod    def process_rule_args_validate(cls, args: dict):        if 'process_rule' not in args or not args['process_rule']:            raise ValueError("Process rule is required")        if not isinstance(args['process_rule'], dict):            raise ValueError("Process rule is invalid")        if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:            raise ValueError("Process rule mode is required")        if args['process_rule']['mode'] not in DatasetProcessRule.MODES:            raise ValueError("Process rule mode is invalid")        if args['process_rule']['mode'] == 'automatic':            args['process_rule']['rules'] = {}        else:            if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:                raise ValueError("Process rule rules is required")            if not isinstance(args['process_rule']['rules'], dict):                raise ValueError("Process rule rules is invalid")            if 'pre_processing_rules' not in args['process_rule']['rules'] \                or args['process_rule']['rules']['pre_processing_rules'] is None:                raise ValueError("Process rule pre_processing_rules is required")            if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):                raise ValueError("Process rule pre_processing_rules is invalid")            unique_pre_processing_rule_dicts = {}            for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:                if 'id' not in pre_processing_rule or not pre_processing_rule['id']:                    raise ValueError("Process rule pre_processing_rules id is required")                if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:                    raise ValueError("Process rule pre_processing_rules id is invalid")                if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:                    raise ValueError("Process rule pre_processing_rules enabled is required")                if not isinstance(pre_processing_rule['enabled'], bool):                    raise ValueError("Process rule pre_processing_rules enabled is invalid")                unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule            args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())            if 'segmentation' not in args['process_rule']['rules'] \                or args['process_rule']['rules']['segmentation'] is None:                raise ValueError("Process rule segmentation is required")            if not isinstance(args['process_rule']['rules']['segmentation'], dict):                raise ValueError("Process rule segmentation is invalid")            if 'separator' not in args['process_rule']['rules']['segmentation'] \                or not args['process_rule']['rules']['segmentation']['separator']:                raise ValueError("Process rule segmentation separator is required")            if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):                raise ValueError("Process rule segmentation separator is invalid")            if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \                or not args['process_rule']['rules']['segmentation']['max_tokens']:                raise ValueError("Process rule segmentation max_tokens is required")            if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):                raise ValueError("Process rule segmentation max_tokens is invalid")    @classmethod    def estimate_args_validate(cls, args: dict):        if 'info_list' not in args or not args['info_list']:            raise ValueError("Data source info is required")        if not isinstance(args['info_list'], dict):            raise ValueError("Data info is invalid")        if 'process_rule' not in args or not args['process_rule']:            raise ValueError("Process rule is required")        if not isinstance(args['process_rule'], dict):            raise ValueError("Process rule is invalid")        if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:            raise ValueError("Process rule mode is required")        if args['process_rule']['mode'] not in DatasetProcessRule.MODES:            raise ValueError("Process rule mode is invalid")        if args['process_rule']['mode'] == 'automatic':            args['process_rule']['rules'] = {}        else:            if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:                raise ValueError("Process rule rules is required")            if not isinstance(args['process_rule']['rules'], dict):                raise ValueError("Process rule rules is invalid")            if 'pre_processing_rules' not in args['process_rule']['rules'] \                or args['process_rule']['rules']['pre_processing_rules'] is None:                raise ValueError("Process rule pre_processing_rules is required")            if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):                raise ValueError("Process rule pre_processing_rules is invalid")            unique_pre_processing_rule_dicts = {}            for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:                if 'id' not in pre_processing_rule or not pre_processing_rule['id']:                    raise ValueError("Process rule pre_processing_rules id is required")                if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:                    raise ValueError("Process rule pre_processing_rules id is invalid")                if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:                    raise ValueError("Process rule pre_processing_rules enabled is required")                if not isinstance(pre_processing_rule['enabled'], bool):                    raise ValueError("Process rule pre_processing_rules enabled is invalid")                unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule            args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())            if 'segmentation' not in args['process_rule']['rules'] \                or args['process_rule']['rules']['segmentation'] is None:                raise ValueError("Process rule segmentation is required")            if not isinstance(args['process_rule']['rules']['segmentation'], dict):                raise ValueError("Process rule segmentation is invalid")            if 'separator' not in args['process_rule']['rules']['segmentation'] \                or not args['process_rule']['rules']['segmentation']['separator']:                raise ValueError("Process rule segmentation separator is required")            if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):                raise ValueError("Process rule segmentation separator is invalid")            if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \                or not args['process_rule']['rules']['segmentation']['max_tokens']:                raise ValueError("Process rule segmentation max_tokens is required")            if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):                raise ValueError("Process rule segmentation max_tokens is invalid")class SegmentService:    @classmethod    def segment_create_args_validate(cls, args: dict, document: Document):        if document.doc_form == 'qa_model':            if 'answer' not in args or not args['answer']:                raise ValueError("Answer is required")            if not args['answer'].strip():                raise ValueError("Answer is empty")        if 'content' not in args or not args['content'] or not args['content'].strip():            raise ValueError("Content is empty")    @classmethod    def create_segment(cls, args: dict, document: Document, dataset: Dataset):        content = args['content']        doc_id = str(uuid.uuid4())        segment_hash = helper.generate_text_hash(content)        tokens = 0        if dataset.indexing_technique == 'high_quality':            model_manager = ModelManager()            embedding_model = model_manager.get_model_instance(                tenant_id=current_user.current_tenant_id,                provider=dataset.embedding_model_provider,                model_type=ModelType.TEXT_EMBEDDING,                model=dataset.embedding_model            )            # calc embedding use tokens            tokens = embedding_model.get_text_embedding_num_tokens(                texts=[content]            )        lock_name = 'add_segment_lock_document_id_{}'.format(document.id)        with redis_client.lock(lock_name, timeout=600):            max_position = db.session.query(func.max(DocumentSegment.position)).filter(                DocumentSegment.document_id == document.id            ).scalar()            segment_document = DocumentSegment(                tenant_id=current_user.current_tenant_id,                dataset_id=document.dataset_id,                document_id=document.id,                index_node_id=doc_id,                index_node_hash=segment_hash,                position=max_position + 1 if max_position else 1,                content=content,                word_count=len(content),                tokens=tokens,                status='completed',                indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),                completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),                created_by=current_user.id            )            if document.doc_form == 'qa_model':                segment_document.answer = args['answer']            db.session.add(segment_document)            db.session.commit()            # save vector index            try:                VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)            except Exception as e:                logging.exception("create segment index failed")                segment_document.enabled = False                segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                segment_document.status = 'error'                segment_document.error = str(e)                db.session.commit()            segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()            return segment    @classmethod    def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):        lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)        with redis_client.lock(lock_name, timeout=600):            embedding_model = None            if dataset.indexing_technique == 'high_quality':                model_manager = ModelManager()                embedding_model = model_manager.get_model_instance(                    tenant_id=current_user.current_tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model                )            max_position = db.session.query(func.max(DocumentSegment.position)).filter(                DocumentSegment.document_id == document.id            ).scalar()            pre_segment_data_list = []            segment_data_list = []            keywords_list = []            for segment_item in segments:                content = segment_item['content']                doc_id = str(uuid.uuid4())                segment_hash = helper.generate_text_hash(content)                tokens = 0                if dataset.indexing_technique == 'high_quality' and embedding_model:                    # calc embedding use tokens                    tokens = embedding_model.get_text_embedding_num_tokens(                        texts=[content]                    )                segment_document = DocumentSegment(                    tenant_id=current_user.current_tenant_id,                    dataset_id=document.dataset_id,                    document_id=document.id,                    index_node_id=doc_id,                    index_node_hash=segment_hash,                    position=max_position + 1 if max_position else 1,                    content=content,                    word_count=len(content),                    tokens=tokens,                    status='completed',                    indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),                    completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),                    created_by=current_user.id                )                if document.doc_form == 'qa_model':                    segment_document.answer = segment_item['answer']                db.session.add(segment_document)                segment_data_list.append(segment_document)                pre_segment_data_list.append(segment_document)                keywords_list.append(segment_item['keywords'])            try:                # save vector index                VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)            except Exception as e:                logging.exception("create segment index failed")                for segment_document in segment_data_list:                    segment_document.enabled = False                    segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                    segment_document.status = 'error'                    segment_document.error = str(e)            db.session.commit()            return segment_data_list    @classmethod    def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):        indexing_cache_key = 'segment_{}_indexing'.format(segment.id)        cache_result = redis_client.get(indexing_cache_key)        if cache_result is not None:            raise ValueError("Segment is indexing, please try again later")        if 'enabled' in args and args['enabled'] is not None:            action = args['enabled']            if segment.enabled != action:                if not action:                    segment.enabled = action                    segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                    segment.disabled_by = current_user.id                    db.session.add(segment)                    db.session.commit()                    # Set cache to prevent indexing the same segment multiple times                    redis_client.setex(indexing_cache_key, 600, 1)                    disable_segment_from_index_task.delay(segment.id)                    return segment        if not segment.enabled:            if 'enabled' in args and args['enabled'] is not None:                if not args['enabled']:                    raise ValueError("Can't update disabled segment")            else:                raise ValueError("Can't update disabled segment")        try:            content = args['content']            if segment.content == content:                if document.doc_form == 'qa_model':                    segment.answer = args['answer']                if args.get('keywords'):                    segment.keywords = args['keywords']                segment.enabled = True                segment.disabled_at = None                segment.disabled_by = None                db.session.add(segment)                db.session.commit()                # update segment index task                if args['keywords']:                    keyword = Keyword(dataset)                    keyword.delete_by_ids([segment.index_node_id])                    document = RAGDocument(                        page_content=segment.content,                        metadata={                            "doc_id": segment.index_node_id,                            "doc_hash": segment.index_node_hash,                            "document_id": segment.document_id,                            "dataset_id": segment.dataset_id,                        }                    )                    keyword.add_texts([document], keywords_list=[args['keywords']])            else:                segment_hash = helper.generate_text_hash(content)                tokens = 0                if dataset.indexing_technique == 'high_quality':                    model_manager = ModelManager()                    embedding_model = model_manager.get_model_instance(                        tenant_id=current_user.current_tenant_id,                        provider=dataset.embedding_model_provider,                        model_type=ModelType.TEXT_EMBEDDING,                        model=dataset.embedding_model                    )                    # calc embedding use tokens                    tokens = embedding_model.get_text_embedding_num_tokens(                        texts=[content]                    )                segment.content = content                segment.index_node_hash = segment_hash                segment.word_count = len(content)                segment.tokens = tokens                segment.status = 'completed'                segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                segment.updated_by = current_user.id                segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                segment.enabled = True                segment.disabled_at = None                segment.disabled_by = None                if document.doc_form == 'qa_model':                    segment.answer = args['answer']                db.session.add(segment)                db.session.commit()                # update segment vector index                VectorService.update_segment_vector(args['keywords'], segment, dataset)        except Exception as e:            logging.exception("update segment index failed")            segment.enabled = False            segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)            segment.status = 'error'            segment.error = str(e)            db.session.commit()        segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()        return segment    @classmethod    def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):        indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)        cache_result = redis_client.get(indexing_cache_key)        if cache_result is not None:            raise ValueError("Segment is deleting.")        # enabled segment need to delete index        if segment.enabled:            # send delete segment index task            redis_client.setex(indexing_cache_key, 600, 1)            delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)        db.session.delete(segment)        db.session.commit()class DatasetCollectionBindingService:    @classmethod    def get_dataset_collection_binding(        cls, provider_name: str, model_name: str,        collection_type: str = 'dataset'    ) -> DatasetCollectionBinding:        dataset_collection_binding = db.session.query(DatasetCollectionBinding). \            filter(            DatasetCollectionBinding.provider_name == provider_name,            DatasetCollectionBinding.model_name == model_name,            DatasetCollectionBinding.type == collection_type        ). \            order_by(DatasetCollectionBinding.created_at). \            first()        if not dataset_collection_binding:            dataset_collection_binding = DatasetCollectionBinding(                provider_name=provider_name,                model_name=model_name,                collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),                type=collection_type            )            db.session.add(dataset_collection_binding)            db.session.commit()        return dataset_collection_binding    @classmethod    def get_dataset_collection_binding_by_id_and_type(        cls, collection_binding_id: str,        collection_type: str = 'dataset'    ) -> DatasetCollectionBinding:        dataset_collection_binding = db.session.query(DatasetCollectionBinding). \            filter(            DatasetCollectionBinding.id == collection_binding_id,            DatasetCollectionBinding.type == collection_type        ). \            order_by(DatasetCollectionBinding.created_at). \            first()        return dataset_collection_bindingclass DatasetPermissionService:    @classmethod    def get_dataset_partial_member_list(cls, dataset_id):        user_list_query = db.session.query(            DatasetPermission.account_id,        ).filter(            DatasetPermission.dataset_id == dataset_id        ).all()        user_list = []        for user in user_list_query:            user_list.append(user.account_id)        return user_list    @classmethod    def update_partial_member_list(cls, tenant_id, dataset_id, user_list):        try:            db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()            permissions = []            for user in user_list:                permission = DatasetPermission(                    tenant_id=tenant_id,                    dataset_id=dataset_id,                    account_id=user['user_id'],                )                permissions.append(permission)            db.session.add_all(permissions)            db.session.commit()        except Exception as e:            db.session.rollback()            raise e    @classmethod    def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):        if not user.is_dataset_editor:            raise NoPermissionError('User does not have permission to edit this dataset.')        if user.is_dataset_operator and dataset.permission != requested_permission:            raise NoPermissionError('Dataset operators cannot change the dataset permissions.')        if user.is_dataset_operator and requested_permission == 'partial_members':            if not requested_partial_member_list:                raise ValueError('Partial member list is required when setting to partial members.')            local_member_list = cls.get_dataset_partial_member_list(dataset.id)            request_member_list = [user['user_id'] for user in requested_partial_member_list]            if set(local_member_list) != set(request_member_list):                raise ValueError('Dataset operators cannot change the dataset permissions.')    @classmethod    def clear_partial_member_list(cls, dataset_id):        try:            db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()            db.session.commit()        except Exception as e:            db.session.rollback()            raise e
 |