dataset_service.py 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465
  1. import datetime
  2. import json
  3. import logging
  4. import random
  5. import time
  6. import uuid
  7. from typing import Optional
  8. from flask import current_app
  9. from flask_login import current_user
  10. from sqlalchemy import func
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_manager import ModelManager
  13. from core.model_runtime.entities.model_entities import ModelType
  14. from core.rag.datasource.keyword.keyword_factory import Keyword
  15. from core.rag.models.document import Document as RAGDocument
  16. from events.dataset_event import dataset_was_deleted
  17. from events.document_event import document_was_deleted
  18. from extensions.ext_database import db
  19. from extensions.ext_redis import redis_client
  20. from libs import helper
  21. from models.account import Account
  22. from models.dataset import (
  23. AppDatasetJoin,
  24. Dataset,
  25. DatasetCollectionBinding,
  26. DatasetProcessRule,
  27. DatasetQuery,
  28. Document,
  29. DocumentSegment,
  30. )
  31. from models.model import UploadFile
  32. from models.source import DataSourceOauthBinding
  33. from services.errors.account import NoPermissionError
  34. from services.errors.dataset import DatasetInUseError, DatasetNameDuplicateError
  35. from services.errors.document import DocumentIndexingError
  36. from services.errors.file import FileNotExistsError
  37. from services.feature_service import FeatureModel, FeatureService
  38. from services.tag_service import TagService
  39. from services.vector_service import VectorService
  40. from tasks.clean_notion_document_task import clean_notion_document_task
  41. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  42. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  43. from tasks.disable_segment_from_index_task import disable_segment_from_index_task
  44. from tasks.document_indexing_task import document_indexing_task
  45. from tasks.document_indexing_update_task import document_indexing_update_task
  46. from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
  47. from tasks.recover_document_indexing_task import recover_document_indexing_task
  48. from tasks.retry_document_indexing_task import retry_document_indexing_task
  49. from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
  50. class DatasetService:
  51. @staticmethod
  52. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
  53. if user:
  54. permission_filter = db.or_(Dataset.created_by == user.id,
  55. Dataset.permission == 'all_team_members')
  56. else:
  57. permission_filter = Dataset.permission == 'all_team_members'
  58. query = Dataset.query.filter(
  59. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  60. .order_by(Dataset.created_at.desc())
  61. if search:
  62. query = query.filter(db.and_(Dataset.name.ilike(f'%{search}%')))
  63. if tag_ids:
  64. target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids)
  65. if target_ids:
  66. query = query.filter(db.and_(Dataset.id.in_(target_ids)))
  67. else:
  68. return [], 0
  69. datasets = query.paginate(
  70. page=page,
  71. per_page=per_page,
  72. max_per_page=100,
  73. error_out=False
  74. )
  75. return datasets.items, datasets.total
  76. @staticmethod
  77. def get_process_rules(dataset_id):
  78. # get the latest process rule
  79. dataset_process_rule = db.session.query(DatasetProcessRule). \
  80. filter(DatasetProcessRule.dataset_id == dataset_id). \
  81. order_by(DatasetProcessRule.created_at.desc()). \
  82. limit(1). \
  83. one_or_none()
  84. if dataset_process_rule:
  85. mode = dataset_process_rule.mode
  86. rules = dataset_process_rule.rules_dict
  87. else:
  88. mode = DocumentService.DEFAULT_RULES['mode']
  89. rules = DocumentService.DEFAULT_RULES['rules']
  90. return {
  91. 'mode': mode,
  92. 'rules': rules
  93. }
  94. @staticmethod
  95. def get_datasets_by_ids(ids, tenant_id):
  96. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  97. Dataset.tenant_id == tenant_id).paginate(
  98. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  99. return datasets.items, datasets.total
  100. @staticmethod
  101. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  102. # check if dataset name already exists
  103. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  104. raise DatasetNameDuplicateError(
  105. f'Dataset with name {name} already exists.')
  106. embedding_model = None
  107. if indexing_technique == 'high_quality':
  108. model_manager = ModelManager()
  109. embedding_model = model_manager.get_default_model_instance(
  110. tenant_id=tenant_id,
  111. model_type=ModelType.TEXT_EMBEDDING
  112. )
  113. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  114. # dataset = Dataset(name=name, provider=provider, config=config)
  115. dataset.created_by = account.id
  116. dataset.updated_by = account.id
  117. dataset.tenant_id = tenant_id
  118. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  119. dataset.embedding_model = embedding_model.model if embedding_model else None
  120. db.session.add(dataset)
  121. db.session.commit()
  122. return dataset
  123. @staticmethod
  124. def get_dataset(dataset_id):
  125. return Dataset.query.filter_by(
  126. id=dataset_id
  127. ).first()
  128. @staticmethod
  129. def check_dataset_model_setting(dataset):
  130. if dataset.indexing_technique == 'high_quality':
  131. try:
  132. model_manager = ModelManager()
  133. model_manager.get_model_instance(
  134. tenant_id=dataset.tenant_id,
  135. provider=dataset.embedding_model_provider,
  136. model_type=ModelType.TEXT_EMBEDDING,
  137. model=dataset.embedding_model
  138. )
  139. except LLMBadRequestError:
  140. raise ValueError(
  141. "No Embedding Model available. Please configure a valid provider "
  142. "in the Settings -> Model Provider.")
  143. except ProviderTokenNotInitError as ex:
  144. raise ValueError(f"The dataset in unavailable, due to: "
  145. f"{ex.description}")
  146. @staticmethod
  147. def update_dataset(dataset_id, data, user):
  148. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  149. dataset = DatasetService.get_dataset(dataset_id)
  150. DatasetService.check_dataset_permission(dataset, user)
  151. action = None
  152. if dataset.indexing_technique != data['indexing_technique']:
  153. # if update indexing_technique
  154. if data['indexing_technique'] == 'economy':
  155. action = 'remove'
  156. filtered_data['embedding_model'] = None
  157. filtered_data['embedding_model_provider'] = None
  158. filtered_data['collection_binding_id'] = None
  159. elif data['indexing_technique'] == 'high_quality':
  160. action = 'add'
  161. # get embedding model setting
  162. try:
  163. model_manager = ModelManager()
  164. embedding_model = model_manager.get_model_instance(
  165. tenant_id=current_user.current_tenant_id,
  166. provider=data['embedding_model_provider'],
  167. model_type=ModelType.TEXT_EMBEDDING,
  168. model=data['embedding_model']
  169. )
  170. filtered_data['embedding_model'] = embedding_model.model
  171. filtered_data['embedding_model_provider'] = embedding_model.provider
  172. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  173. embedding_model.provider,
  174. embedding_model.model
  175. )
  176. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  177. except LLMBadRequestError:
  178. raise ValueError(
  179. "No Embedding Model available. Please configure a valid provider "
  180. "in the Settings -> Model Provider.")
  181. except ProviderTokenNotInitError as ex:
  182. raise ValueError(ex.description)
  183. else:
  184. if data['embedding_model_provider'] != dataset.embedding_model_provider or \
  185. data['embedding_model'] != dataset.embedding_model:
  186. action = 'update'
  187. try:
  188. model_manager = ModelManager()
  189. embedding_model = model_manager.get_model_instance(
  190. tenant_id=current_user.current_tenant_id,
  191. provider=data['embedding_model_provider'],
  192. model_type=ModelType.TEXT_EMBEDDING,
  193. model=data['embedding_model']
  194. )
  195. filtered_data['embedding_model'] = embedding_model.model
  196. filtered_data['embedding_model_provider'] = embedding_model.provider
  197. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  198. embedding_model.provider,
  199. embedding_model.model
  200. )
  201. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  202. except LLMBadRequestError:
  203. raise ValueError(
  204. "No Embedding Model available. Please configure a valid provider "
  205. "in the Settings -> Model Provider.")
  206. except ProviderTokenNotInitError as ex:
  207. raise ValueError(ex.description)
  208. filtered_data['updated_by'] = user.id
  209. filtered_data['updated_at'] = datetime.datetime.now()
  210. # update Retrieval model
  211. filtered_data['retrieval_model'] = data['retrieval_model']
  212. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  213. db.session.commit()
  214. if action:
  215. deal_dataset_vector_index_task.delay(dataset_id, action)
  216. return dataset
  217. @staticmethod
  218. def delete_dataset(dataset_id, user):
  219. count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
  220. if count > 0:
  221. raise DatasetInUseError()
  222. dataset = DatasetService.get_dataset(dataset_id)
  223. if dataset is None:
  224. return False
  225. DatasetService.check_dataset_permission(dataset, user)
  226. dataset_was_deleted.send(dataset)
  227. db.session.delete(dataset)
  228. db.session.commit()
  229. return True
  230. @staticmethod
  231. def check_dataset_permission(dataset, user):
  232. if dataset.tenant_id != user.current_tenant_id:
  233. logging.debug(
  234. f'User {user.id} does not have permission to access dataset {dataset.id}')
  235. raise NoPermissionError(
  236. 'You do not have permission to access this dataset.')
  237. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  238. logging.debug(
  239. f'User {user.id} does not have permission to access dataset {dataset.id}')
  240. raise NoPermissionError(
  241. 'You do not have permission to access this dataset.')
  242. @staticmethod
  243. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  244. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  245. .order_by(db.desc(DatasetQuery.created_at)) \
  246. .paginate(
  247. page=page, per_page=per_page, max_per_page=100, error_out=False
  248. )
  249. return dataset_queries.items, dataset_queries.total
  250. @staticmethod
  251. def get_related_apps(dataset_id: str):
  252. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  253. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  254. class DocumentService:
  255. DEFAULT_RULES = {
  256. 'mode': 'custom',
  257. 'rules': {
  258. 'pre_processing_rules': [
  259. {'id': 'remove_extra_spaces', 'enabled': True},
  260. {'id': 'remove_urls_emails', 'enabled': False}
  261. ],
  262. 'segmentation': {
  263. 'delimiter': '\n',
  264. 'max_tokens': 500,
  265. 'chunk_overlap': 50
  266. }
  267. }
  268. }
  269. DOCUMENT_METADATA_SCHEMA = {
  270. "book": {
  271. "title": str,
  272. "language": str,
  273. "author": str,
  274. "publisher": str,
  275. "publication_date": str,
  276. "isbn": str,
  277. "category": str,
  278. },
  279. "web_page": {
  280. "title": str,
  281. "url": str,
  282. "language": str,
  283. "publish_date": str,
  284. "author/publisher": str,
  285. "topic/keywords": str,
  286. "description": str,
  287. },
  288. "paper": {
  289. "title": str,
  290. "language": str,
  291. "author": str,
  292. "publish_date": str,
  293. "journal/conference_name": str,
  294. "volume/issue/page_numbers": str,
  295. "doi": str,
  296. "topic/keywords": str,
  297. "abstract": str,
  298. },
  299. "social_media_post": {
  300. "platform": str,
  301. "author/username": str,
  302. "publish_date": str,
  303. "post_url": str,
  304. "topic/tags": str,
  305. },
  306. "wikipedia_entry": {
  307. "title": str,
  308. "language": str,
  309. "web_page_url": str,
  310. "last_edit_date": str,
  311. "editor/contributor": str,
  312. "summary/introduction": str,
  313. },
  314. "personal_document": {
  315. "title": str,
  316. "author": str,
  317. "creation_date": str,
  318. "last_modified_date": str,
  319. "document_type": str,
  320. "tags/category": str,
  321. },
  322. "business_document": {
  323. "title": str,
  324. "author": str,
  325. "creation_date": str,
  326. "last_modified_date": str,
  327. "document_type": str,
  328. "department/team": str,
  329. },
  330. "im_chat_log": {
  331. "chat_platform": str,
  332. "chat_participants/group_name": str,
  333. "start_date": str,
  334. "end_date": str,
  335. "summary": str,
  336. },
  337. "synced_from_notion": {
  338. "title": str,
  339. "language": str,
  340. "author/creator": str,
  341. "creation_date": str,
  342. "last_modified_date": str,
  343. "notion_page_link": str,
  344. "category/tags": str,
  345. "description": str,
  346. },
  347. "synced_from_github": {
  348. "repository_name": str,
  349. "repository_description": str,
  350. "repository_owner/organization": str,
  351. "code_filename": str,
  352. "code_file_path": str,
  353. "programming_language": str,
  354. "github_link": str,
  355. "open_source_license": str,
  356. "commit_date": str,
  357. "commit_author": str,
  358. },
  359. "others": dict
  360. }
  361. @staticmethod
  362. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  363. document = db.session.query(Document).filter(
  364. Document.id == document_id,
  365. Document.dataset_id == dataset_id
  366. ).first()
  367. return document
  368. @staticmethod
  369. def get_document_by_id(document_id: str) -> Optional[Document]:
  370. document = db.session.query(Document).filter(
  371. Document.id == document_id
  372. ).first()
  373. return document
  374. @staticmethod
  375. def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
  376. documents = db.session.query(Document).filter(
  377. Document.dataset_id == dataset_id,
  378. Document.enabled == True
  379. ).all()
  380. return documents
  381. @staticmethod
  382. def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
  383. documents = db.session.query(Document).filter(
  384. Document.dataset_id == dataset_id,
  385. Document.indexing_status.in_(['error', 'paused'])
  386. ).all()
  387. return documents
  388. @staticmethod
  389. def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
  390. documents = db.session.query(Document).filter(
  391. Document.batch == batch,
  392. Document.dataset_id == dataset_id,
  393. Document.tenant_id == current_user.current_tenant_id
  394. ).all()
  395. return documents
  396. @staticmethod
  397. def get_document_file_detail(file_id: str):
  398. file_detail = db.session.query(UploadFile). \
  399. filter(UploadFile.id == file_id). \
  400. one_or_none()
  401. return file_detail
  402. @staticmethod
  403. def check_archived(document):
  404. if document.archived:
  405. return True
  406. else:
  407. return False
  408. @staticmethod
  409. def delete_document(document):
  410. # trigger document_was_deleted signal
  411. document_was_deleted.send(document.id, dataset_id=document.dataset_id, doc_form=document.doc_form)
  412. db.session.delete(document)
  413. db.session.commit()
  414. @staticmethod
  415. def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
  416. dataset = DatasetService.get_dataset(dataset_id)
  417. if not dataset:
  418. raise ValueError('Dataset not found.')
  419. document = DocumentService.get_document(dataset_id, document_id)
  420. if not document:
  421. raise ValueError('Document not found.')
  422. if document.tenant_id != current_user.current_tenant_id:
  423. raise ValueError('No permission.')
  424. document.name = name
  425. db.session.add(document)
  426. db.session.commit()
  427. return document
  428. @staticmethod
  429. def pause_document(document):
  430. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  431. raise DocumentIndexingError()
  432. # update document to be paused
  433. document.is_paused = True
  434. document.paused_by = current_user.id
  435. document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  436. db.session.add(document)
  437. db.session.commit()
  438. # set document paused flag
  439. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  440. redis_client.setnx(indexing_cache_key, "True")
  441. @staticmethod
  442. def recover_document(document):
  443. if not document.is_paused:
  444. raise DocumentIndexingError()
  445. # update document to be recover
  446. document.is_paused = False
  447. document.paused_by = None
  448. document.paused_at = None
  449. db.session.add(document)
  450. db.session.commit()
  451. # delete paused flag
  452. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  453. redis_client.delete(indexing_cache_key)
  454. # trigger async task
  455. recover_document_indexing_task.delay(document.dataset_id, document.id)
  456. @staticmethod
  457. def retry_document(dataset_id: str, documents: list[Document]):
  458. for document in documents:
  459. # add retry flag
  460. retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id)
  461. cache_result = redis_client.get(retry_indexing_cache_key)
  462. if cache_result is not None:
  463. raise ValueError("Document is being retried, please try again later")
  464. # retry document indexing
  465. document.indexing_status = 'waiting'
  466. db.session.add(document)
  467. db.session.commit()
  468. redis_client.setex(retry_indexing_cache_key, 600, 1)
  469. # trigger async task
  470. document_ids = [document.id for document in documents]
  471. retry_document_indexing_task.delay(dataset_id, document_ids)
  472. @staticmethod
  473. def sync_website_document(dataset_id: str, document: Document):
  474. # add sync flag
  475. sync_indexing_cache_key = 'document_{}_is_sync'.format(document.id)
  476. cache_result = redis_client.get(sync_indexing_cache_key)
  477. if cache_result is not None:
  478. raise ValueError("Document is being synced, please try again later")
  479. # sync document indexing
  480. document.indexing_status = 'waiting'
  481. data_source_info = document.data_source_info_dict
  482. data_source_info['mode'] = 'scrape'
  483. document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
  484. db.session.add(document)
  485. db.session.commit()
  486. redis_client.setex(sync_indexing_cache_key, 600, 1)
  487. sync_website_document_indexing_task.delay(dataset_id, document.id)
  488. @staticmethod
  489. def get_documents_position(dataset_id):
  490. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  491. if document:
  492. return document.position + 1
  493. else:
  494. return 1
  495. @staticmethod
  496. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  497. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  498. created_from: str = 'web'):
  499. # check document limit
  500. features = FeatureService.get_features(current_user.current_tenant_id)
  501. if features.billing.enabled:
  502. if 'original_document_id' not in document_data or not document_data['original_document_id']:
  503. count = 0
  504. if document_data["data_source"]["type"] == "upload_file":
  505. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  506. count = len(upload_file_list)
  507. elif document_data["data_source"]["type"] == "notion_import":
  508. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  509. for notion_info in notion_info_list:
  510. count = count + len(notion_info['pages'])
  511. elif document_data["data_source"]["type"] == "website_crawl":
  512. website_info = document_data["data_source"]['info_list']['website_info_list']
  513. count = len(website_info['urls'])
  514. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  515. if count > batch_upload_limit:
  516. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  517. DocumentService.check_documents_upload_quota(count, features)
  518. # if dataset is empty, update dataset data_source_type
  519. if not dataset.data_source_type:
  520. dataset.data_source_type = document_data["data_source"]["type"]
  521. if not dataset.indexing_technique:
  522. if 'indexing_technique' not in document_data \
  523. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  524. raise ValueError("Indexing technique is required")
  525. dataset.indexing_technique = document_data["indexing_technique"]
  526. if document_data["indexing_technique"] == 'high_quality':
  527. model_manager = ModelManager()
  528. embedding_model = model_manager.get_default_model_instance(
  529. tenant_id=current_user.current_tenant_id,
  530. model_type=ModelType.TEXT_EMBEDDING
  531. )
  532. dataset.embedding_model = embedding_model.model
  533. dataset.embedding_model_provider = embedding_model.provider
  534. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  535. embedding_model.provider,
  536. embedding_model.model
  537. )
  538. dataset.collection_binding_id = dataset_collection_binding.id
  539. if not dataset.retrieval_model:
  540. default_retrieval_model = {
  541. 'search_method': 'semantic_search',
  542. 'reranking_enable': False,
  543. 'reranking_model': {
  544. 'reranking_provider_name': '',
  545. 'reranking_model_name': ''
  546. },
  547. 'top_k': 2,
  548. 'score_threshold_enabled': False
  549. }
  550. dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
  551. 'retrieval_model') else default_retrieval_model
  552. documents = []
  553. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  554. if document_data.get("original_document_id"):
  555. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  556. documents.append(document)
  557. else:
  558. # save process rule
  559. if not dataset_process_rule:
  560. process_rule = document_data["process_rule"]
  561. if process_rule["mode"] == "custom":
  562. dataset_process_rule = DatasetProcessRule(
  563. dataset_id=dataset.id,
  564. mode=process_rule["mode"],
  565. rules=json.dumps(process_rule["rules"]),
  566. created_by=account.id
  567. )
  568. elif process_rule["mode"] == "automatic":
  569. dataset_process_rule = DatasetProcessRule(
  570. dataset_id=dataset.id,
  571. mode=process_rule["mode"],
  572. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  573. created_by=account.id
  574. )
  575. db.session.add(dataset_process_rule)
  576. db.session.commit()
  577. position = DocumentService.get_documents_position(dataset.id)
  578. document_ids = []
  579. duplicate_document_ids = []
  580. if document_data["data_source"]["type"] == "upload_file":
  581. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  582. for file_id in upload_file_list:
  583. file = db.session.query(UploadFile).filter(
  584. UploadFile.tenant_id == dataset.tenant_id,
  585. UploadFile.id == file_id
  586. ).first()
  587. # raise error if file not found
  588. if not file:
  589. raise FileNotExistsError()
  590. file_name = file.name
  591. data_source_info = {
  592. "upload_file_id": file_id,
  593. }
  594. # check duplicate
  595. if document_data.get('duplicate', False):
  596. document = Document.query.filter_by(
  597. dataset_id=dataset.id,
  598. tenant_id=current_user.current_tenant_id,
  599. data_source_type='upload_file',
  600. enabled=True,
  601. name=file_name
  602. ).first()
  603. if document:
  604. document.dataset_process_rule_id = dataset_process_rule.id
  605. document.updated_at = datetime.datetime.utcnow()
  606. document.created_from = created_from
  607. document.doc_form = document_data['doc_form']
  608. document.doc_language = document_data['doc_language']
  609. document.data_source_info = json.dumps(data_source_info)
  610. document.batch = batch
  611. document.indexing_status = 'waiting'
  612. db.session.add(document)
  613. documents.append(document)
  614. duplicate_document_ids.append(document.id)
  615. continue
  616. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  617. document_data["data_source"]["type"],
  618. document_data["doc_form"],
  619. document_data["doc_language"],
  620. data_source_info, created_from, position,
  621. account, file_name, batch)
  622. db.session.add(document)
  623. db.session.flush()
  624. document_ids.append(document.id)
  625. documents.append(document)
  626. position += 1
  627. elif document_data["data_source"]["type"] == "notion_import":
  628. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  629. exist_page_ids = []
  630. exist_document = dict()
  631. documents = Document.query.filter_by(
  632. dataset_id=dataset.id,
  633. tenant_id=current_user.current_tenant_id,
  634. data_source_type='notion_import',
  635. enabled=True
  636. ).all()
  637. if documents:
  638. for document in documents:
  639. data_source_info = json.loads(document.data_source_info)
  640. exist_page_ids.append(data_source_info['notion_page_id'])
  641. exist_document[data_source_info['notion_page_id']] = document.id
  642. for notion_info in notion_info_list:
  643. workspace_id = notion_info['workspace_id']
  644. data_source_binding = DataSourceOauthBinding.query.filter(
  645. db.and_(
  646. DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
  647. DataSourceOauthBinding.provider == 'notion',
  648. DataSourceOauthBinding.disabled == False,
  649. DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  650. )
  651. ).first()
  652. if not data_source_binding:
  653. raise ValueError('Data source binding not found.')
  654. for page in notion_info['pages']:
  655. if page['page_id'] not in exist_page_ids:
  656. data_source_info = {
  657. "notion_workspace_id": workspace_id,
  658. "notion_page_id": page['page_id'],
  659. "notion_page_icon": page['page_icon'],
  660. "type": page['type']
  661. }
  662. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  663. document_data["data_source"]["type"],
  664. document_data["doc_form"],
  665. document_data["doc_language"],
  666. data_source_info, created_from, position,
  667. account, page['page_name'], batch)
  668. db.session.add(document)
  669. db.session.flush()
  670. document_ids.append(document.id)
  671. documents.append(document)
  672. position += 1
  673. else:
  674. exist_document.pop(page['page_id'])
  675. # delete not selected documents
  676. if len(exist_document) > 0:
  677. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  678. elif document_data["data_source"]["type"] == "website_crawl":
  679. website_info = document_data["data_source"]['info_list']['website_info_list']
  680. urls = website_info['urls']
  681. for url in urls:
  682. data_source_info = {
  683. 'url': url,
  684. 'provider': website_info['provider'],
  685. 'job_id': website_info['job_id'],
  686. 'only_main_content': website_info.get('only_main_content', False),
  687. 'mode': 'crawl',
  688. }
  689. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  690. document_data["data_source"]["type"],
  691. document_data["doc_form"],
  692. document_data["doc_language"],
  693. data_source_info, created_from, position,
  694. account, url, batch)
  695. db.session.add(document)
  696. db.session.flush()
  697. document_ids.append(document.id)
  698. documents.append(document)
  699. position += 1
  700. db.session.commit()
  701. # trigger async task
  702. if document_ids:
  703. document_indexing_task.delay(dataset.id, document_ids)
  704. if duplicate_document_ids:
  705. duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
  706. return documents, batch
  707. @staticmethod
  708. def check_documents_upload_quota(count: int, features: FeatureModel):
  709. can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
  710. if count > can_upload_size:
  711. raise ValueError(
  712. f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.')
  713. @staticmethod
  714. def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  715. document_language: str, data_source_info: dict, created_from: str, position: int,
  716. account: Account,
  717. name: str, batch: str):
  718. document = Document(
  719. tenant_id=dataset.tenant_id,
  720. dataset_id=dataset.id,
  721. position=position,
  722. data_source_type=data_source_type,
  723. data_source_info=json.dumps(data_source_info),
  724. dataset_process_rule_id=process_rule_id,
  725. batch=batch,
  726. name=name,
  727. created_from=created_from,
  728. created_by=account.id,
  729. doc_form=document_form,
  730. doc_language=document_language
  731. )
  732. return document
  733. @staticmethod
  734. def get_tenant_documents_count():
  735. documents_count = Document.query.filter(Document.completed_at.isnot(None),
  736. Document.enabled == True,
  737. Document.archived == False,
  738. Document.tenant_id == current_user.current_tenant_id).count()
  739. return documents_count
  740. @staticmethod
  741. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  742. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  743. created_from: str = 'web'):
  744. DatasetService.check_dataset_model_setting(dataset)
  745. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  746. if document.display_status != 'available':
  747. raise ValueError("Document is not available")
  748. # update document name
  749. if document_data.get('name'):
  750. document.name = document_data['name']
  751. # save process rule
  752. if document_data.get('process_rule'):
  753. process_rule = document_data["process_rule"]
  754. if process_rule["mode"] == "custom":
  755. dataset_process_rule = DatasetProcessRule(
  756. dataset_id=dataset.id,
  757. mode=process_rule["mode"],
  758. rules=json.dumps(process_rule["rules"]),
  759. created_by=account.id
  760. )
  761. elif process_rule["mode"] == "automatic":
  762. dataset_process_rule = DatasetProcessRule(
  763. dataset_id=dataset.id,
  764. mode=process_rule["mode"],
  765. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  766. created_by=account.id
  767. )
  768. db.session.add(dataset_process_rule)
  769. db.session.commit()
  770. document.dataset_process_rule_id = dataset_process_rule.id
  771. # update document data source
  772. if document_data.get('data_source'):
  773. file_name = ''
  774. data_source_info = {}
  775. if document_data["data_source"]["type"] == "upload_file":
  776. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  777. for file_id in upload_file_list:
  778. file = db.session.query(UploadFile).filter(
  779. UploadFile.tenant_id == dataset.tenant_id,
  780. UploadFile.id == file_id
  781. ).first()
  782. # raise error if file not found
  783. if not file:
  784. raise FileNotExistsError()
  785. file_name = file.name
  786. data_source_info = {
  787. "upload_file_id": file_id,
  788. }
  789. elif document_data["data_source"]["type"] == "notion_import":
  790. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  791. for notion_info in notion_info_list:
  792. workspace_id = notion_info['workspace_id']
  793. data_source_binding = DataSourceOauthBinding.query.filter(
  794. db.and_(
  795. DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
  796. DataSourceOauthBinding.provider == 'notion',
  797. DataSourceOauthBinding.disabled == False,
  798. DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  799. )
  800. ).first()
  801. if not data_source_binding:
  802. raise ValueError('Data source binding not found.')
  803. for page in notion_info['pages']:
  804. data_source_info = {
  805. "notion_workspace_id": workspace_id,
  806. "notion_page_id": page['page_id'],
  807. "notion_page_icon": page['page_icon'],
  808. "type": page['type']
  809. }
  810. elif document_data["data_source"]["type"] == "website_crawl":
  811. website_info = document_data["data_source"]['info_list']['website_info_list']
  812. urls = website_info['urls']
  813. for url in urls:
  814. data_source_info = {
  815. 'url': url,
  816. 'provider': website_info['provider'],
  817. 'job_id': website_info['job_id'],
  818. 'only_main_content': website_info.get('only_main_content', False),
  819. 'mode': 'crawl',
  820. }
  821. document.data_source_type = document_data["data_source"]["type"]
  822. document.data_source_info = json.dumps(data_source_info)
  823. document.name = file_name
  824. # update document to be waiting
  825. document.indexing_status = 'waiting'
  826. document.completed_at = None
  827. document.processing_started_at = None
  828. document.parsing_completed_at = None
  829. document.cleaning_completed_at = None
  830. document.splitting_completed_at = None
  831. document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  832. document.created_from = created_from
  833. document.doc_form = document_data['doc_form']
  834. db.session.add(document)
  835. db.session.commit()
  836. # update document segment
  837. update_params = {
  838. DocumentSegment.status: 're_segment'
  839. }
  840. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  841. db.session.commit()
  842. # trigger async task
  843. document_indexing_update_task.delay(document.dataset_id, document.id)
  844. return document
  845. @staticmethod
  846. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  847. features = FeatureService.get_features(current_user.current_tenant_id)
  848. if features.billing.enabled:
  849. count = 0
  850. if document_data["data_source"]["type"] == "upload_file":
  851. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  852. count = len(upload_file_list)
  853. elif document_data["data_source"]["type"] == "notion_import":
  854. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  855. for notion_info in notion_info_list:
  856. count = count + len(notion_info['pages'])
  857. elif document_data["data_source"]["type"] == "website_crawl":
  858. website_info = document_data["data_source"]['info_list']['website_info_list']
  859. count = len(website_info['urls'])
  860. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  861. if count > batch_upload_limit:
  862. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  863. DocumentService.check_documents_upload_quota(count, features)
  864. embedding_model = None
  865. dataset_collection_binding_id = None
  866. retrieval_model = None
  867. if document_data['indexing_technique'] == 'high_quality':
  868. model_manager = ModelManager()
  869. embedding_model = model_manager.get_default_model_instance(
  870. tenant_id=current_user.current_tenant_id,
  871. model_type=ModelType.TEXT_EMBEDDING
  872. )
  873. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  874. embedding_model.provider,
  875. embedding_model.model
  876. )
  877. dataset_collection_binding_id = dataset_collection_binding.id
  878. if document_data.get('retrieval_model'):
  879. retrieval_model = document_data['retrieval_model']
  880. else:
  881. default_retrieval_model = {
  882. 'search_method': 'semantic_search',
  883. 'reranking_enable': False,
  884. 'reranking_model': {
  885. 'reranking_provider_name': '',
  886. 'reranking_model_name': ''
  887. },
  888. 'top_k': 2,
  889. 'score_threshold_enabled': False
  890. }
  891. retrieval_model = default_retrieval_model
  892. # save dataset
  893. dataset = Dataset(
  894. tenant_id=tenant_id,
  895. name='',
  896. data_source_type=document_data["data_source"]["type"],
  897. indexing_technique=document_data["indexing_technique"],
  898. created_by=account.id,
  899. embedding_model=embedding_model.model if embedding_model else None,
  900. embedding_model_provider=embedding_model.provider if embedding_model else None,
  901. collection_binding_id=dataset_collection_binding_id,
  902. retrieval_model=retrieval_model
  903. )
  904. db.session.add(dataset)
  905. db.session.flush()
  906. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  907. cut_length = 18
  908. cut_name = documents[0].name[:cut_length]
  909. dataset.name = cut_name + '...'
  910. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  911. db.session.commit()
  912. return dataset, documents, batch
  913. @classmethod
  914. def document_create_args_validate(cls, args: dict):
  915. if 'original_document_id' not in args or not args['original_document_id']:
  916. DocumentService.data_source_args_validate(args)
  917. DocumentService.process_rule_args_validate(args)
  918. else:
  919. if ('data_source' not in args and not args['data_source']) \
  920. and ('process_rule' not in args and not args['process_rule']):
  921. raise ValueError("Data source or Process rule is required")
  922. else:
  923. if args.get('data_source'):
  924. DocumentService.data_source_args_validate(args)
  925. if args.get('process_rule'):
  926. DocumentService.process_rule_args_validate(args)
  927. @classmethod
  928. def data_source_args_validate(cls, args: dict):
  929. if 'data_source' not in args or not args['data_source']:
  930. raise ValueError("Data source is required")
  931. if not isinstance(args['data_source'], dict):
  932. raise ValueError("Data source is invalid")
  933. if 'type' not in args['data_source'] or not args['data_source']['type']:
  934. raise ValueError("Data source type is required")
  935. if args['data_source']['type'] not in Document.DATA_SOURCES:
  936. raise ValueError("Data source type is invalid")
  937. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  938. raise ValueError("Data source info is required")
  939. if args['data_source']['type'] == 'upload_file':
  940. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  941. 'file_info_list']:
  942. raise ValueError("File source info is required")
  943. if args['data_source']['type'] == 'notion_import':
  944. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  945. 'notion_info_list']:
  946. raise ValueError("Notion source info is required")
  947. if args['data_source']['type'] == 'website_crawl':
  948. if 'website_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  949. 'website_info_list']:
  950. raise ValueError("Website source info is required")
  951. @classmethod
  952. def process_rule_args_validate(cls, args: dict):
  953. if 'process_rule' not in args or not args['process_rule']:
  954. raise ValueError("Process rule is required")
  955. if not isinstance(args['process_rule'], dict):
  956. raise ValueError("Process rule is invalid")
  957. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  958. raise ValueError("Process rule mode is required")
  959. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  960. raise ValueError("Process rule mode is invalid")
  961. if args['process_rule']['mode'] == 'automatic':
  962. args['process_rule']['rules'] = {}
  963. else:
  964. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  965. raise ValueError("Process rule rules is required")
  966. if not isinstance(args['process_rule']['rules'], dict):
  967. raise ValueError("Process rule rules is invalid")
  968. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  969. or args['process_rule']['rules']['pre_processing_rules'] is None:
  970. raise ValueError("Process rule pre_processing_rules is required")
  971. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  972. raise ValueError("Process rule pre_processing_rules is invalid")
  973. unique_pre_processing_rule_dicts = {}
  974. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  975. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  976. raise ValueError("Process rule pre_processing_rules id is required")
  977. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  978. raise ValueError("Process rule pre_processing_rules id is invalid")
  979. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  980. raise ValueError("Process rule pre_processing_rules enabled is required")
  981. if not isinstance(pre_processing_rule['enabled'], bool):
  982. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  983. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  984. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  985. if 'segmentation' not in args['process_rule']['rules'] \
  986. or args['process_rule']['rules']['segmentation'] is None:
  987. raise ValueError("Process rule segmentation is required")
  988. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  989. raise ValueError("Process rule segmentation is invalid")
  990. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  991. or not args['process_rule']['rules']['segmentation']['separator']:
  992. raise ValueError("Process rule segmentation separator is required")
  993. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  994. raise ValueError("Process rule segmentation separator is invalid")
  995. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  996. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  997. raise ValueError("Process rule segmentation max_tokens is required")
  998. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  999. raise ValueError("Process rule segmentation max_tokens is invalid")
  1000. @classmethod
  1001. def estimate_args_validate(cls, args: dict):
  1002. if 'info_list' not in args or not args['info_list']:
  1003. raise ValueError("Data source info is required")
  1004. if not isinstance(args['info_list'], dict):
  1005. raise ValueError("Data info is invalid")
  1006. if 'process_rule' not in args or not args['process_rule']:
  1007. raise ValueError("Process rule is required")
  1008. if not isinstance(args['process_rule'], dict):
  1009. raise ValueError("Process rule is invalid")
  1010. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  1011. raise ValueError("Process rule mode is required")
  1012. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  1013. raise ValueError("Process rule mode is invalid")
  1014. if args['process_rule']['mode'] == 'automatic':
  1015. args['process_rule']['rules'] = {}
  1016. else:
  1017. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  1018. raise ValueError("Process rule rules is required")
  1019. if not isinstance(args['process_rule']['rules'], dict):
  1020. raise ValueError("Process rule rules is invalid")
  1021. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  1022. or args['process_rule']['rules']['pre_processing_rules'] is None:
  1023. raise ValueError("Process rule pre_processing_rules is required")
  1024. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  1025. raise ValueError("Process rule pre_processing_rules is invalid")
  1026. unique_pre_processing_rule_dicts = {}
  1027. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  1028. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  1029. raise ValueError("Process rule pre_processing_rules id is required")
  1030. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  1031. raise ValueError("Process rule pre_processing_rules id is invalid")
  1032. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  1033. raise ValueError("Process rule pre_processing_rules enabled is required")
  1034. if not isinstance(pre_processing_rule['enabled'], bool):
  1035. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  1036. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  1037. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  1038. if 'segmentation' not in args['process_rule']['rules'] \
  1039. or args['process_rule']['rules']['segmentation'] is None:
  1040. raise ValueError("Process rule segmentation is required")
  1041. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  1042. raise ValueError("Process rule segmentation is invalid")
  1043. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  1044. or not args['process_rule']['rules']['segmentation']['separator']:
  1045. raise ValueError("Process rule segmentation separator is required")
  1046. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  1047. raise ValueError("Process rule segmentation separator is invalid")
  1048. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  1049. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  1050. raise ValueError("Process rule segmentation max_tokens is required")
  1051. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  1052. raise ValueError("Process rule segmentation max_tokens is invalid")
  1053. class SegmentService:
  1054. @classmethod
  1055. def segment_create_args_validate(cls, args: dict, document: Document):
  1056. if document.doc_form == 'qa_model':
  1057. if 'answer' not in args or not args['answer']:
  1058. raise ValueError("Answer is required")
  1059. if not args['answer'].strip():
  1060. raise ValueError("Answer is empty")
  1061. if 'content' not in args or not args['content'] or not args['content'].strip():
  1062. raise ValueError("Content is empty")
  1063. @classmethod
  1064. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  1065. content = args['content']
  1066. doc_id = str(uuid.uuid4())
  1067. segment_hash = helper.generate_text_hash(content)
  1068. tokens = 0
  1069. if dataset.indexing_technique == 'high_quality':
  1070. model_manager = ModelManager()
  1071. embedding_model = model_manager.get_model_instance(
  1072. tenant_id=current_user.current_tenant_id,
  1073. provider=dataset.embedding_model_provider,
  1074. model_type=ModelType.TEXT_EMBEDDING,
  1075. model=dataset.embedding_model
  1076. )
  1077. # calc embedding use tokens
  1078. tokens = embedding_model.get_text_embedding_num_tokens(
  1079. texts=[content]
  1080. )
  1081. lock_name = 'add_segment_lock_document_id_{}'.format(document.id)
  1082. with redis_client.lock(lock_name, timeout=600):
  1083. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1084. DocumentSegment.document_id == document.id
  1085. ).scalar()
  1086. segment_document = DocumentSegment(
  1087. tenant_id=current_user.current_tenant_id,
  1088. dataset_id=document.dataset_id,
  1089. document_id=document.id,
  1090. index_node_id=doc_id,
  1091. index_node_hash=segment_hash,
  1092. position=max_position + 1 if max_position else 1,
  1093. content=content,
  1094. word_count=len(content),
  1095. tokens=tokens,
  1096. status='completed',
  1097. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1098. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1099. created_by=current_user.id
  1100. )
  1101. if document.doc_form == 'qa_model':
  1102. segment_document.answer = args['answer']
  1103. db.session.add(segment_document)
  1104. db.session.commit()
  1105. # save vector index
  1106. try:
  1107. VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
  1108. except Exception as e:
  1109. logging.exception("create segment index failed")
  1110. segment_document.enabled = False
  1111. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1112. segment_document.status = 'error'
  1113. segment_document.error = str(e)
  1114. db.session.commit()
  1115. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  1116. return segment
  1117. @classmethod
  1118. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  1119. lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)
  1120. with redis_client.lock(lock_name, timeout=600):
  1121. embedding_model = None
  1122. if dataset.indexing_technique == 'high_quality':
  1123. model_manager = ModelManager()
  1124. embedding_model = model_manager.get_model_instance(
  1125. tenant_id=current_user.current_tenant_id,
  1126. provider=dataset.embedding_model_provider,
  1127. model_type=ModelType.TEXT_EMBEDDING,
  1128. model=dataset.embedding_model
  1129. )
  1130. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1131. DocumentSegment.document_id == document.id
  1132. ).scalar()
  1133. pre_segment_data_list = []
  1134. segment_data_list = []
  1135. keywords_list = []
  1136. for segment_item in segments:
  1137. content = segment_item['content']
  1138. doc_id = str(uuid.uuid4())
  1139. segment_hash = helper.generate_text_hash(content)
  1140. tokens = 0
  1141. if dataset.indexing_technique == 'high_quality' and embedding_model:
  1142. # calc embedding use tokens
  1143. tokens = embedding_model.get_text_embedding_num_tokens(
  1144. texts=[content]
  1145. )
  1146. segment_document = DocumentSegment(
  1147. tenant_id=current_user.current_tenant_id,
  1148. dataset_id=document.dataset_id,
  1149. document_id=document.id,
  1150. index_node_id=doc_id,
  1151. index_node_hash=segment_hash,
  1152. position=max_position + 1 if max_position else 1,
  1153. content=content,
  1154. word_count=len(content),
  1155. tokens=tokens,
  1156. status='completed',
  1157. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1158. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1159. created_by=current_user.id
  1160. )
  1161. if document.doc_form == 'qa_model':
  1162. segment_document.answer = segment_item['answer']
  1163. db.session.add(segment_document)
  1164. segment_data_list.append(segment_document)
  1165. pre_segment_data_list.append(segment_document)
  1166. keywords_list.append(segment_item['keywords'])
  1167. try:
  1168. # save vector index
  1169. VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
  1170. except Exception as e:
  1171. logging.exception("create segment index failed")
  1172. for segment_document in segment_data_list:
  1173. segment_document.enabled = False
  1174. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1175. segment_document.status = 'error'
  1176. segment_document.error = str(e)
  1177. db.session.commit()
  1178. return segment_data_list
  1179. @classmethod
  1180. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  1181. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  1182. cache_result = redis_client.get(indexing_cache_key)
  1183. if cache_result is not None:
  1184. raise ValueError("Segment is indexing, please try again later")
  1185. if 'enabled' in args and args['enabled'] is not None:
  1186. action = args['enabled']
  1187. if segment.enabled != action:
  1188. if not action:
  1189. segment.enabled = action
  1190. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1191. segment.disabled_by = current_user.id
  1192. db.session.add(segment)
  1193. db.session.commit()
  1194. # Set cache to prevent indexing the same segment multiple times
  1195. redis_client.setex(indexing_cache_key, 600, 1)
  1196. disable_segment_from_index_task.delay(segment.id)
  1197. return segment
  1198. if not segment.enabled:
  1199. if 'enabled' in args and args['enabled'] is not None:
  1200. if not args['enabled']:
  1201. raise ValueError("Can't update disabled segment")
  1202. else:
  1203. raise ValueError("Can't update disabled segment")
  1204. try:
  1205. content = args['content']
  1206. if segment.content == content:
  1207. if document.doc_form == 'qa_model':
  1208. segment.answer = args['answer']
  1209. if args.get('keywords'):
  1210. segment.keywords = args['keywords']
  1211. segment.enabled = True
  1212. segment.disabled_at = None
  1213. segment.disabled_by = None
  1214. db.session.add(segment)
  1215. db.session.commit()
  1216. # update segment index task
  1217. if args['keywords']:
  1218. keyword = Keyword(dataset)
  1219. keyword.delete_by_ids([segment.index_node_id])
  1220. document = RAGDocument(
  1221. page_content=segment.content,
  1222. metadata={
  1223. "doc_id": segment.index_node_id,
  1224. "doc_hash": segment.index_node_hash,
  1225. "document_id": segment.document_id,
  1226. "dataset_id": segment.dataset_id,
  1227. }
  1228. )
  1229. keyword.add_texts([document], keywords_list=[args['keywords']])
  1230. else:
  1231. segment_hash = helper.generate_text_hash(content)
  1232. tokens = 0
  1233. if dataset.indexing_technique == 'high_quality':
  1234. model_manager = ModelManager()
  1235. embedding_model = model_manager.get_model_instance(
  1236. tenant_id=current_user.current_tenant_id,
  1237. provider=dataset.embedding_model_provider,
  1238. model_type=ModelType.TEXT_EMBEDDING,
  1239. model=dataset.embedding_model
  1240. )
  1241. # calc embedding use tokens
  1242. tokens = embedding_model.get_text_embedding_num_tokens(
  1243. texts=[content]
  1244. )
  1245. segment.content = content
  1246. segment.index_node_hash = segment_hash
  1247. segment.word_count = len(content)
  1248. segment.tokens = tokens
  1249. segment.status = 'completed'
  1250. segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1251. segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1252. segment.updated_by = current_user.id
  1253. segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1254. segment.enabled = True
  1255. segment.disabled_at = None
  1256. segment.disabled_by = None
  1257. if document.doc_form == 'qa_model':
  1258. segment.answer = args['answer']
  1259. db.session.add(segment)
  1260. db.session.commit()
  1261. # update segment vector index
  1262. VectorService.update_segment_vector(args['keywords'], segment, dataset)
  1263. except Exception as e:
  1264. logging.exception("update segment index failed")
  1265. segment.enabled = False
  1266. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1267. segment.status = 'error'
  1268. segment.error = str(e)
  1269. db.session.commit()
  1270. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1271. return segment
  1272. @classmethod
  1273. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1274. indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
  1275. cache_result = redis_client.get(indexing_cache_key)
  1276. if cache_result is not None:
  1277. raise ValueError("Segment is deleting.")
  1278. # enabled segment need to delete index
  1279. if segment.enabled:
  1280. # send delete segment index task
  1281. redis_client.setex(indexing_cache_key, 600, 1)
  1282. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  1283. db.session.delete(segment)
  1284. db.session.commit()
  1285. class DatasetCollectionBindingService:
  1286. @classmethod
  1287. def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
  1288. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1289. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1290. filter(DatasetCollectionBinding.provider_name == provider_name,
  1291. DatasetCollectionBinding.model_name == model_name,
  1292. DatasetCollectionBinding.type == collection_type). \
  1293. order_by(DatasetCollectionBinding.created_at). \
  1294. first()
  1295. if not dataset_collection_binding:
  1296. dataset_collection_binding = DatasetCollectionBinding(
  1297. provider_name=provider_name,
  1298. model_name=model_name,
  1299. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  1300. type=collection_type
  1301. )
  1302. db.session.add(dataset_collection_binding)
  1303. db.session.commit()
  1304. return dataset_collection_binding
  1305. @classmethod
  1306. def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
  1307. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1308. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1309. filter(DatasetCollectionBinding.id == collection_binding_id,
  1310. DatasetCollectionBinding.type == collection_type). \
  1311. order_by(DatasetCollectionBinding.created_at). \
  1312. first()
  1313. return dataset_collection_binding