web_reader_tool.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425
  1. import hashlib
  2. import json
  3. import os
  4. import re
  5. import site
  6. import subprocess
  7. import tempfile
  8. import unicodedata
  9. from contextlib import contextmanager
  10. from typing import Type
  11. import requests
  12. from bs4 import BeautifulSoup, NavigableString, Comment, CData
  13. from langchain.base_language import BaseLanguageModel
  14. from langchain.chains.summarize import load_summarize_chain
  15. from langchain.schema import Document
  16. from langchain.text_splitter import RecursiveCharacterTextSplitter
  17. from langchain.tools.base import BaseTool
  18. from newspaper import Article
  19. from pydantic import BaseModel, Field
  20. from regex import regex
  21. from core.data_loader import file_extractor
  22. from core.data_loader.file_extractor import FileExtractor
  23. FULL_TEMPLATE = """
  24. TITLE: {title}
  25. AUTHORS: {authors}
  26. PUBLISH DATE: {publish_date}
  27. TOP_IMAGE_URL: {top_image}
  28. TEXT:
  29. {text}
  30. """
  31. class WebReaderToolInput(BaseModel):
  32. url: str = Field(..., description="URL of the website to read")
  33. summary: bool = Field(
  34. default=False,
  35. description="When the user's question requires extracting the summarizing content of the webpage, "
  36. "set it to true."
  37. )
  38. cursor: int = Field(
  39. default=0,
  40. description="Start reading from this character."
  41. "Use when the first response was truncated"
  42. "and you want to continue reading the page."
  43. "The value cannot exceed 24000.",
  44. )
  45. class WebReaderTool(BaseTool):
  46. """Reader tool for getting website title and contents. Gives more control than SimpleReaderTool."""
  47. name: str = "web_reader"
  48. args_schema: Type[BaseModel] = WebReaderToolInput
  49. description: str = "use this to read a website. " \
  50. "If you can answer the question based on the information provided, " \
  51. "there is no need to use."
  52. page_contents: str = None
  53. url: str = None
  54. max_chunk_length: int = 4000
  55. summary_chunk_tokens: int = 4000
  56. summary_chunk_overlap: int = 0
  57. summary_separators: list[str] = ["\n\n", "。", ".", " ", ""]
  58. continue_reading: bool = True
  59. llm: BaseLanguageModel = None
  60. def _run(self, url: str, summary: bool = False, cursor: int = 0) -> str:
  61. try:
  62. if not self.page_contents or self.url != url:
  63. page_contents = get_url(url)
  64. self.page_contents = page_contents
  65. self.url = url
  66. else:
  67. page_contents = self.page_contents
  68. except Exception as e:
  69. return f'Read this website failed, caused by: {str(e)}.'
  70. if summary and self.llm:
  71. character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
  72. chunk_size=self.summary_chunk_tokens,
  73. chunk_overlap=self.summary_chunk_overlap,
  74. separators=self.summary_separators
  75. )
  76. texts = character_splitter.split_text(page_contents)
  77. docs = [Document(page_content=t) for t in texts]
  78. if len(docs) == 0:
  79. return "No content found."
  80. docs = docs[1:]
  81. # only use first 5 docs
  82. if len(docs) > 5:
  83. docs = docs[:5]
  84. chain = load_summarize_chain(self.llm, chain_type="refine", callbacks=self.callbacks)
  85. try:
  86. page_contents = chain.run(docs)
  87. # todo use cache
  88. except Exception as e:
  89. return f'Read this website failed, caused by: {str(e)}.'
  90. else:
  91. page_contents = page_result(page_contents, cursor, self.max_chunk_length)
  92. if self.continue_reading and len(page_contents) >= self.max_chunk_length:
  93. page_contents += f"\nPAGE WAS TRUNCATED. IF YOU FIND INFORMATION THAT CAN ANSWER QUESTION " \
  94. f"THEN DIRECT ANSWER AND STOP INVOKING web_reader TOOL, OTHERWISE USE " \
  95. f"CURSOR={cursor+len(page_contents)} TO CONTINUE READING."
  96. return page_contents
  97. async def _arun(self, url: str) -> str:
  98. raise NotImplementedError
  99. def page_result(text: str, cursor: int, max_length: int) -> str:
  100. """Page through `text` and return a substring of `max_length` characters starting from `cursor`."""
  101. return text[cursor: cursor + max_length]
  102. def get_url(url: str) -> str:
  103. """Fetch URL and return the contents as a string."""
  104. headers = {
  105. "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
  106. }
  107. supported_content_types = file_extractor.SUPPORT_URL_CONTENT_TYPES + ["text/html"]
  108. head_response = requests.head(url, headers=headers, allow_redirects=True, timeout=(5, 10))
  109. if head_response.status_code != 200:
  110. return "URL returned status code {}.".format(head_response.status_code)
  111. # check content-type
  112. main_content_type = head_response.headers.get('Content-Type').split(';')[0].strip()
  113. if main_content_type not in supported_content_types:
  114. return "Unsupported content-type [{}] of URL.".format(main_content_type)
  115. if main_content_type in file_extractor.SUPPORT_URL_CONTENT_TYPES:
  116. return FileExtractor.load_from_url(url, return_text=True)
  117. response = requests.get(url, headers=headers, allow_redirects=True, timeout=(5, 30))
  118. a = extract_using_readabilipy(response.text)
  119. if not a['plain_text'] or not a['plain_text'].strip():
  120. return get_url_from_newspaper3k(url)
  121. res = FULL_TEMPLATE.format(
  122. title=a['title'],
  123. authors=a['byline'],
  124. publish_date=a['date'],
  125. top_image="",
  126. text=a['plain_text'] if a['plain_text'] else "",
  127. )
  128. return res
  129. def get_url_from_newspaper3k(url: str) -> str:
  130. a = Article(url)
  131. a.download()
  132. a.parse()
  133. res = FULL_TEMPLATE.format(
  134. title=a.title,
  135. authors=a.authors,
  136. publish_date=a.publish_date,
  137. top_image=a.top_image,
  138. text=a.text,
  139. )
  140. return res
  141. def extract_using_readabilipy(html):
  142. with tempfile.NamedTemporaryFile(delete=False, mode='w+') as f_html:
  143. f_html.write(html)
  144. f_html.close()
  145. html_path = f_html.name
  146. # Call Mozilla's Readability.js Readability.parse() function via node, writing output to a temporary file
  147. article_json_path = html_path + ".json"
  148. jsdir = os.path.join(find_module_path('readabilipy'), 'javascript')
  149. with chdir(jsdir):
  150. subprocess.check_call(["node", "ExtractArticle.js", "-i", html_path, "-o", article_json_path])
  151. # Read output of call to Readability.parse() from JSON file and return as Python dictionary
  152. with open(article_json_path, "r", encoding="utf-8") as json_file:
  153. input_json = json.loads(json_file.read())
  154. # Deleting files after processing
  155. os.unlink(article_json_path)
  156. os.unlink(html_path)
  157. article_json = {
  158. "title": None,
  159. "byline": None,
  160. "date": None,
  161. "content": None,
  162. "plain_content": None,
  163. "plain_text": None
  164. }
  165. # Populate article fields from readability fields where present
  166. if input_json:
  167. if "title" in input_json and input_json["title"]:
  168. article_json["title"] = input_json["title"]
  169. if "byline" in input_json and input_json["byline"]:
  170. article_json["byline"] = input_json["byline"]
  171. if "date" in input_json and input_json["date"]:
  172. article_json["date"] = input_json["date"]
  173. if "content" in input_json and input_json["content"]:
  174. article_json["content"] = input_json["content"]
  175. article_json["plain_content"] = plain_content(article_json["content"], False, False)
  176. article_json["plain_text"] = extract_text_blocks_as_plain_text(article_json["plain_content"])
  177. if "textContent" in input_json and input_json["textContent"]:
  178. article_json["plain_text"] = input_json["textContent"]
  179. article_json["plain_text"] = re.sub(r'\n\s*\n', '\n', article_json["plain_text"])
  180. return article_json
  181. def find_module_path(module_name):
  182. for package_path in site.getsitepackages():
  183. potential_path = os.path.join(package_path, module_name)
  184. if os.path.exists(potential_path):
  185. return potential_path
  186. return None
  187. @contextmanager
  188. def chdir(path):
  189. """Change directory in context and return to original on exit"""
  190. # From https://stackoverflow.com/a/37996581, couldn't find a built-in
  191. original_path = os.getcwd()
  192. os.chdir(path)
  193. try:
  194. yield
  195. finally:
  196. os.chdir(original_path)
  197. def extract_text_blocks_as_plain_text(paragraph_html):
  198. # Load article as DOM
  199. soup = BeautifulSoup(paragraph_html, 'html.parser')
  200. # Select all lists
  201. list_elements = soup.find_all(['ul', 'ol'])
  202. # Prefix text in all list items with "* " and make lists paragraphs
  203. for list_element in list_elements:
  204. plain_items = "".join(list(filter(None, [plain_text_leaf_node(li)["text"] for li in list_element.find_all('li')])))
  205. list_element.string = plain_items
  206. list_element.name = "p"
  207. # Select all text blocks
  208. text_blocks = [s.parent for s in soup.find_all(string=True)]
  209. text_blocks = [plain_text_leaf_node(block) for block in text_blocks]
  210. # Drop empty paragraphs
  211. text_blocks = list(filter(lambda p: p["text"] is not None, text_blocks))
  212. return text_blocks
  213. def plain_text_leaf_node(element):
  214. # Extract all text, stripped of any child HTML elements and normalise it
  215. plain_text = normalise_text(element.get_text())
  216. if plain_text != "" and element.name == "li":
  217. plain_text = "* {}, ".format(plain_text)
  218. if plain_text == "":
  219. plain_text = None
  220. if "data-node-index" in element.attrs:
  221. plain = {"node_index": element["data-node-index"], "text": plain_text}
  222. else:
  223. plain = {"text": plain_text}
  224. return plain
  225. def plain_content(readability_content, content_digests, node_indexes):
  226. # Load article as DOM
  227. soup = BeautifulSoup(readability_content, 'html.parser')
  228. # Make all elements plain
  229. elements = plain_elements(soup.contents, content_digests, node_indexes)
  230. if node_indexes:
  231. # Add node index attributes to nodes
  232. elements = [add_node_indexes(element) for element in elements]
  233. # Replace article contents with plain elements
  234. soup.contents = elements
  235. return str(soup)
  236. def plain_elements(elements, content_digests, node_indexes):
  237. # Get plain content versions of all elements
  238. elements = [plain_element(element, content_digests, node_indexes)
  239. for element in elements]
  240. if content_digests:
  241. # Add content digest attribute to nodes
  242. elements = [add_content_digest(element) for element in elements]
  243. return elements
  244. def plain_element(element, content_digests, node_indexes):
  245. # For lists, we make each item plain text
  246. if is_leaf(element):
  247. # For leaf node elements, extract the text content, discarding any HTML tags
  248. # 1. Get element contents as text
  249. plain_text = element.get_text()
  250. # 2. Normalise the extracted text string to a canonical representation
  251. plain_text = normalise_text(plain_text)
  252. # 3. Update element content to be plain text
  253. element.string = plain_text
  254. elif is_text(element):
  255. if is_non_printing(element):
  256. # The simplified HTML may have come from Readability.js so might
  257. # have non-printing text (e.g. Comment or CData). In this case, we
  258. # keep the structure, but ensure that the string is empty.
  259. element = type(element)("")
  260. else:
  261. plain_text = element.string
  262. plain_text = normalise_text(plain_text)
  263. element = type(element)(plain_text)
  264. else:
  265. # If not a leaf node or leaf type call recursively on child nodes, replacing
  266. element.contents = plain_elements(element.contents, content_digests, node_indexes)
  267. return element
  268. def add_node_indexes(element, node_index="0"):
  269. # Can't add attributes to string types
  270. if is_text(element):
  271. return element
  272. # Add index to current element
  273. element["data-node-index"] = node_index
  274. # Add index to child elements
  275. for local_idx, child in enumerate(
  276. [c for c in element.contents if not is_text(c)], start=1):
  277. # Can't add attributes to leaf string types
  278. child_index = "{stem}.{local}".format(
  279. stem=node_index, local=local_idx)
  280. add_node_indexes(child, node_index=child_index)
  281. return element
  282. def normalise_text(text):
  283. """Normalise unicode and whitespace."""
  284. # Normalise unicode first to try and standardise whitespace characters as much as possible before normalising them
  285. text = strip_control_characters(text)
  286. text = normalise_unicode(text)
  287. text = normalise_whitespace(text)
  288. return text
  289. def strip_control_characters(text):
  290. """Strip out unicode control characters which might break the parsing."""
  291. # Unicode control characters
  292. # [Cc]: Other, Control [includes new lines]
  293. # [Cf]: Other, Format
  294. # [Cn]: Other, Not Assigned
  295. # [Co]: Other, Private Use
  296. # [Cs]: Other, Surrogate
  297. control_chars = set(['Cc', 'Cf', 'Cn', 'Co', 'Cs'])
  298. retained_chars = ['\t', '\n', '\r', '\f']
  299. # Remove non-printing control characters
  300. return "".join(["" if (unicodedata.category(char) in control_chars) and (char not in retained_chars) else char for char in text])
  301. def normalise_unicode(text):
  302. """Normalise unicode such that things that are visually equivalent map to the same unicode string where possible."""
  303. normal_form = "NFKC"
  304. text = unicodedata.normalize(normal_form, text)
  305. return text
  306. def normalise_whitespace(text):
  307. """Replace runs of whitespace characters with a single space as this is what happens when HTML text is displayed."""
  308. text = regex.sub(r"\s+", " ", text)
  309. # Remove leading and trailing whitespace
  310. text = text.strip()
  311. return text
  312. def is_leaf(element):
  313. return (element.name in ['p', 'li'])
  314. def is_text(element):
  315. return isinstance(element, NavigableString)
  316. def is_non_printing(element):
  317. return any(isinstance(element, _e) for _e in [Comment, CData])
  318. def add_content_digest(element):
  319. if not is_text(element):
  320. element["data-content-digest"] = content_digest(element)
  321. return element
  322. def content_digest(element):
  323. if is_text(element):
  324. # Hash
  325. trimmed_string = element.string.strip()
  326. if trimmed_string == "":
  327. digest = ""
  328. else:
  329. digest = hashlib.sha256(trimmed_string.encode('utf-8')).hexdigest()
  330. else:
  331. contents = element.contents
  332. num_contents = len(contents)
  333. if num_contents == 0:
  334. # No hash when no child elements exist
  335. digest = ""
  336. elif num_contents == 1:
  337. # If single child, use digest of child
  338. digest = content_digest(contents[0])
  339. else:
  340. # Build content digest from the "non-empty" digests of child nodes
  341. digest = hashlib.sha256()
  342. child_digests = list(
  343. filter(lambda x: x != "", [content_digest(content) for content in contents]))
  344. for child in child_digests:
  345. digest.update(child.encode('utf-8'))
  346. digest = digest.hexdigest()
  347. return digest