sino a0a67873aa chore: optimize ark model parameters (#7378) 1 anno fa
..
configs c7df6783df Revert "feat: support pinning, including, and excluding for Model Providers and Tools" (#7324) 1 anno fa
constants 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 1 anno fa
contexts 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 1 anno fa
controllers 4d4af00399 fix: keywords (#7357) 1 anno fa
core a0a67873aa chore: optimize ark model parameters (#7378) 1 anno fa
docker f656e1bae2 fix: ensure db migration in docker entry script running with `upgrade-db` command for proper locking (#6946) 1 anno fa
events 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 1 anno fa
extensions 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 1 anno fa
fields 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 1 anno fa
libs a2fafee53a chore(api/libs/bearer_data_source.py): Remove expired fie. (#7300) 1 anno fa
migrations 32dc963556 feat(api/workflow): Add `Conversation.dialogue_count` (#7275) 1 anno fa
models 32dc963556 feat(api/workflow): Add `Conversation.dialogue_count` (#7275) 1 anno fa
schedule 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 1 anno fa
services 5350b1d938 fix(api/services/workflow/workflow_converter.py): Add converrsation variable to workflow. (#7257) 1 anno fa
tasks dbc1ae45de chore: update docstrings (#7343) 1 anno fa
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 1 anno fa
tests 3a33062405 feat: support siliconflow rerank (#7337) 1 anno fa
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 anno fa
.env.example c7df6783df Revert "feat: support pinning, including, and excluding for Model Providers and Tools" (#7324) 1 anno fa
Dockerfile 169cde6c3c add nltk punkt resource (#7063) 1 anno fa
README.md fb5e3662d5 Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 1 anno fa
app.py 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 1 anno fa
commands.py 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 1 anno fa
poetry.lock f104b930cf feat: support elasticsearch vector database (#3558) 1 anno fa
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 1 anno fa
pyproject.toml 9414143b5f chore(api/libs): Apply ruff format. (#7301) 1 anno fa

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

```bash for Linux sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env


   ```bash for Mac
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh