| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 | import loggingimport timefrom core.rag.datasource.retrieval_service import RetrievalServicefrom core.rag.models.document import Documentfrom core.rag.retrieval.retrieval_methods import RetrievalMethodfrom extensions.ext_database import dbfrom models.account import Accountfrom models.dataset import Dataset, DatasetQuery, DocumentSegmentdefault_retrieval_model = {    "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,    "reranking_enable": False,    "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},    "top_k": 2,    "score_threshold_enabled": False,}class HitTestingService:    @classmethod    def retrieve(        cls,        dataset: Dataset,        query: str,        account: Account,        retrieval_model: dict,        external_retrieval_model: dict,        limit: int = 10,    ) -> dict:        if dataset.available_document_count == 0 or dataset.available_segment_count == 0:            return {                "query": {                    "content": query,                    "tsne_position": {"x": 0, "y": 0},                },                "records": [],            }        start = time.perf_counter()        # get retrieval model , if the model is not setting , using default        if not retrieval_model:            retrieval_model = dataset.retrieval_model or default_retrieval_model        all_documents = RetrievalService.retrieve(            retrieval_method=retrieval_model.get("search_method", "semantic_search"),            dataset_id=dataset.id,            query=cls.escape_query_for_search(query),            top_k=retrieval_model.get("top_k", 2),            score_threshold=retrieval_model.get("score_threshold", 0.0)            if retrieval_model["score_threshold_enabled"]            else 0.0,            reranking_model=retrieval_model.get("reranking_model", None)            if retrieval_model["reranking_enable"]            else None,            reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",            weights=retrieval_model.get("weights", None),        )        end = time.perf_counter()        logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")        dataset_query = DatasetQuery(            dataset_id=dataset.id, content=query, source="hit_testing", created_by_role="account", created_by=account.id        )        db.session.add(dataset_query)        db.session.commit()        return cls.compact_retrieve_response(dataset, query, all_documents)    @classmethod    def external_retrieve(        cls,        dataset: Dataset,        query: str,        account: Account,        external_retrieval_model: dict,    ) -> dict:        if dataset.provider != "external":            return {                "query": {"content": query},                "records": [],            }        start = time.perf_counter()        all_documents = RetrievalService.external_retrieve(            dataset_id=dataset.id,            query=cls.escape_query_for_search(query),            external_retrieval_model=external_retrieval_model,        )        end = time.perf_counter()        logging.debug(f"External knowledge hit testing retrieve in {end - start:0.4f} seconds")        dataset_query = DatasetQuery(            dataset_id=dataset.id, content=query, source="hit_testing", created_by_role="account", created_by=account.id        )        db.session.add(dataset_query)        db.session.commit()        return cls.compact_external_retrieve_response(dataset, query, all_documents)    @classmethod    def compact_retrieve_response(cls, dataset: Dataset, query: str, documents: list[Document]):        records = []        for document in documents:            index_node_id = document.metadata["doc_id"]            segment = (                db.session.query(DocumentSegment)                .filter(                    DocumentSegment.dataset_id == dataset.id,                    DocumentSegment.enabled == True,                    DocumentSegment.status == "completed",                    DocumentSegment.index_node_id == index_node_id,                )                .first()            )            if not segment:                continue            record = {                "segment": segment,                "score": document.metadata.get("score", None),            }            records.append(record)        return {            "query": {                "content": query,            },            "records": records,        }    @classmethod    def compact_external_retrieve_response(cls, dataset: Dataset, query: str, documents: list):        records = []        if dataset.provider == "external":            for document in documents:                record = {                    "content": document.get("content", None),                    "title": document.get("title", None),                    "score": document.get("score", None),                    "metadata": document.get("metadata", None),                }                records.append(record)            return {                "query": {                    "content": query,                },                "records": records,            }    @classmethod    def hit_testing_args_check(cls, args):        query = args["query"]        if not query or len(query) > 250:            raise ValueError("Query is required and cannot exceed 250 characters")    @staticmethod    def escape_query_for_search(query: str) -> str:        return query.replace('"', '\\"')
 |