test_llm.py 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132
  1. import os
  2. from collections.abc import Generator
  3. import pytest
  4. from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
  5. from core.model_runtime.entities.message_entities import (
  6. AssistantPromptMessage,
  7. SystemPromptMessage,
  8. UserPromptMessage,
  9. )
  10. from core.model_runtime.errors.validate import CredentialsValidateFailedError
  11. from core.model_runtime.model_providers.vessl_ai.llm.llm import VesslAILargeLanguageModel
  12. def test_validate_credentials():
  13. model = VesslAILargeLanguageModel()
  14. with pytest.raises(CredentialsValidateFailedError):
  15. model.validate_credentials(
  16. model=os.environ.get("VESSL_AI_MODEL_NAME"),
  17. credentials={
  18. "api_key": "invalid_key",
  19. "endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
  20. "mode": "chat",
  21. },
  22. )
  23. with pytest.raises(CredentialsValidateFailedError):
  24. model.validate_credentials(
  25. model=os.environ.get("VESSL_AI_MODEL_NAME"),
  26. credentials={
  27. "api_key": os.environ.get("VESSL_AI_API_KEY"),
  28. "endpoint_url": "http://invalid_url",
  29. "mode": "chat",
  30. },
  31. )
  32. model.validate_credentials(
  33. model=os.environ.get("VESSL_AI_MODEL_NAME"),
  34. credentials={
  35. "api_key": os.environ.get("VESSL_AI_API_KEY"),
  36. "endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
  37. "mode": "chat",
  38. },
  39. )
  40. def test_invoke_model():
  41. model = VesslAILargeLanguageModel()
  42. response = model.invoke(
  43. model=os.environ.get("VESSL_AI_MODEL_NAME"),
  44. credentials={
  45. "api_key": os.environ.get("VESSL_AI_API_KEY"),
  46. "endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
  47. "mode": "chat",
  48. },
  49. prompt_messages=[
  50. SystemPromptMessage(
  51. content="You are a helpful AI assistant.",
  52. ),
  53. UserPromptMessage(content="Who are you?"),
  54. ],
  55. model_parameters={
  56. "temperature": 1.0,
  57. "top_k": 2,
  58. "top_p": 0.5,
  59. },
  60. stop=["How"],
  61. stream=False,
  62. user="abc-123",
  63. )
  64. assert isinstance(response, LLMResult)
  65. assert len(response.message.content) > 0
  66. def test_invoke_stream_model():
  67. model = VesslAILargeLanguageModel()
  68. response = model.invoke(
  69. model=os.environ.get("VESSL_AI_MODEL_NAME"),
  70. credentials={
  71. "api_key": os.environ.get("VESSL_AI_API_KEY"),
  72. "endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
  73. "mode": "chat",
  74. },
  75. prompt_messages=[
  76. SystemPromptMessage(
  77. content="You are a helpful AI assistant.",
  78. ),
  79. UserPromptMessage(content="Who are you?"),
  80. ],
  81. model_parameters={
  82. "temperature": 1.0,
  83. "top_k": 2,
  84. "top_p": 0.5,
  85. },
  86. stop=["How"],
  87. stream=True,
  88. user="abc-123",
  89. )
  90. assert isinstance(response, Generator)
  91. for chunk in response:
  92. assert isinstance(chunk, LLMResultChunk)
  93. assert isinstance(chunk.delta, LLMResultChunkDelta)
  94. assert isinstance(chunk.delta.message, AssistantPromptMessage)
  95. def test_get_num_tokens():
  96. model = VesslAILargeLanguageModel()
  97. num_tokens = model.get_num_tokens(
  98. model=os.environ.get("VESSL_AI_MODEL_NAME"),
  99. credentials={
  100. "api_key": os.environ.get("VESSL_AI_API_KEY"),
  101. "endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
  102. },
  103. prompt_messages=[
  104. SystemPromptMessage(
  105. content="You are a helpful AI assistant.",
  106. ),
  107. UserPromptMessage(content="Hello World!"),
  108. ],
  109. )
  110. assert isinstance(num_tokens, int)
  111. assert num_tokens == 21