123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- import os
- from collections.abc import Generator
- import pytest
- from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
- from core.model_runtime.entities.message_entities import (
- AssistantPromptMessage,
- SystemPromptMessage,
- UserPromptMessage,
- )
- from core.model_runtime.errors.validate import CredentialsValidateFailedError
- from core.model_runtime.model_providers.vessl_ai.llm.llm import VesslAILargeLanguageModel
- def test_validate_credentials():
- model = VesslAILargeLanguageModel()
- with pytest.raises(CredentialsValidateFailedError):
- model.validate_credentials(
- model=os.environ.get("VESSL_AI_MODEL_NAME"),
- credentials={
- "api_key": "invalid_key",
- "endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
- "mode": "chat",
- },
- )
- with pytest.raises(CredentialsValidateFailedError):
- model.validate_credentials(
- model=os.environ.get("VESSL_AI_MODEL_NAME"),
- credentials={
- "api_key": os.environ.get("VESSL_AI_API_KEY"),
- "endpoint_url": "http://invalid_url",
- "mode": "chat",
- },
- )
- model.validate_credentials(
- model=os.environ.get("VESSL_AI_MODEL_NAME"),
- credentials={
- "api_key": os.environ.get("VESSL_AI_API_KEY"),
- "endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
- "mode": "chat",
- },
- )
- def test_invoke_model():
- model = VesslAILargeLanguageModel()
- response = model.invoke(
- model=os.environ.get("VESSL_AI_MODEL_NAME"),
- credentials={
- "api_key": os.environ.get("VESSL_AI_API_KEY"),
- "endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
- "mode": "chat",
- },
- prompt_messages=[
- SystemPromptMessage(
- content="You are a helpful AI assistant.",
- ),
- UserPromptMessage(content="Who are you?"),
- ],
- model_parameters={
- "temperature": 1.0,
- "top_k": 2,
- "top_p": 0.5,
- },
- stop=["How"],
- stream=False,
- user="abc-123",
- )
- assert isinstance(response, LLMResult)
- assert len(response.message.content) > 0
- def test_invoke_stream_model():
- model = VesslAILargeLanguageModel()
- response = model.invoke(
- model=os.environ.get("VESSL_AI_MODEL_NAME"),
- credentials={
- "api_key": os.environ.get("VESSL_AI_API_KEY"),
- "endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
- "mode": "chat",
- },
- prompt_messages=[
- SystemPromptMessage(
- content="You are a helpful AI assistant.",
- ),
- UserPromptMessage(content="Who are you?"),
- ],
- model_parameters={
- "temperature": 1.0,
- "top_k": 2,
- "top_p": 0.5,
- },
- stop=["How"],
- stream=True,
- user="abc-123",
- )
- assert isinstance(response, Generator)
- for chunk in response:
- assert isinstance(chunk, LLMResultChunk)
- assert isinstance(chunk.delta, LLMResultChunkDelta)
- assert isinstance(chunk.delta.message, AssistantPromptMessage)
- def test_get_num_tokens():
- model = VesslAILargeLanguageModel()
- num_tokens = model.get_num_tokens(
- model=os.environ.get("VESSL_AI_MODEL_NAME"),
- credentials={
- "api_key": os.environ.get("VESSL_AI_API_KEY"),
- "endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
- },
- prompt_messages=[
- SystemPromptMessage(
- content="You are a helpful AI assistant.",
- ),
- UserPromptMessage(content="Hello World!"),
- ],
- )
- assert isinstance(num_tokens, int)
- assert num_tokens == 21
|