tool.py 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126
  1. from core.model_runtime.entities.llm_entities import LLMResult
  2. from core.model_runtime.entities.message_entities import PromptMessage, SystemPromptMessage, UserPromptMessage
  3. from core.tools.__base.tool import Tool
  4. from core.tools.entities.tool_entities import ToolProviderType
  5. from core.tools.utils.model_invocation_utils import ModelInvocationUtils
  6. _SUMMARY_PROMPT = """You are a professional language researcher, you are interested in the language
  7. and you can quickly aimed at the main point of an webpage and reproduce it in your own words but
  8. retain the original meaning and keep the key points.
  9. however, the text you got is too long, what you got is possible a part of the text.
  10. Please summarize the text you got.
  11. """
  12. class BuiltinTool(Tool):
  13. """
  14. Builtin tool
  15. :param meta: the meta data of a tool call processing
  16. """
  17. def invoke_model(self, user_id: str, prompt_messages: list[PromptMessage], stop: list[str]) -> LLMResult:
  18. """
  19. invoke model
  20. :param model_config: the model config
  21. :param prompt_messages: the prompt messages
  22. :param stop: the stop words
  23. :return: the model result
  24. """
  25. # invoke model
  26. return ModelInvocationUtils.invoke(
  27. user_id=user_id,
  28. tenant_id=self.runtime.tenant_id,
  29. tool_type="builtin",
  30. tool_name=self.entity.identity.name,
  31. prompt_messages=prompt_messages,
  32. )
  33. def tool_provider_type(self) -> ToolProviderType:
  34. return ToolProviderType.BUILT_IN
  35. def get_max_tokens(self) -> int:
  36. """
  37. get max tokens
  38. :param model_config: the model config
  39. :return: the max tokens
  40. """
  41. return ModelInvocationUtils.get_max_llm_context_tokens(
  42. tenant_id=self.runtime.tenant_id,
  43. )
  44. def get_prompt_tokens(self, prompt_messages: list[PromptMessage]) -> int:
  45. """
  46. get prompt tokens
  47. :param prompt_messages: the prompt messages
  48. :return: the tokens
  49. """
  50. return ModelInvocationUtils.calculate_tokens(tenant_id=self.runtime.tenant_id, prompt_messages=prompt_messages)
  51. def summary(self, user_id: str, content: str) -> str:
  52. max_tokens = self.get_max_tokens()
  53. if self.get_prompt_tokens(prompt_messages=[UserPromptMessage(content=content)]) < max_tokens * 0.6:
  54. return content
  55. def get_prompt_tokens(content: str) -> int:
  56. return self.get_prompt_tokens(
  57. prompt_messages=[SystemPromptMessage(content=_SUMMARY_PROMPT), UserPromptMessage(content=content)]
  58. )
  59. def summarize(content: str) -> str:
  60. summary = self.invoke_model(
  61. user_id=user_id,
  62. prompt_messages=[SystemPromptMessage(content=_SUMMARY_PROMPT), UserPromptMessage(content=content)],
  63. stop=[],
  64. )
  65. assert isinstance(summary.message.content, str)
  66. return summary.message.content
  67. lines = content.split("\n")
  68. new_lines = []
  69. # split long line into multiple lines
  70. for i in range(len(lines)):
  71. line = lines[i]
  72. if not line.strip():
  73. continue
  74. if len(line) < max_tokens * 0.5:
  75. new_lines.append(line)
  76. elif get_prompt_tokens(line) > max_tokens * 0.7:
  77. while get_prompt_tokens(line) > max_tokens * 0.7:
  78. new_lines.append(line[: int(max_tokens * 0.5)])
  79. line = line[int(max_tokens * 0.5) :]
  80. new_lines.append(line)
  81. else:
  82. new_lines.append(line)
  83. # merge lines into messages with max tokens
  84. messages: list[str] = []
  85. for i in new_lines:
  86. if len(messages) == 0:
  87. messages.append(i)
  88. else:
  89. if len(messages[-1]) + len(i) < max_tokens * 0.5:
  90. messages[-1] += i
  91. if get_prompt_tokens(messages[-1] + i) > max_tokens * 0.7:
  92. messages.append(i)
  93. else:
  94. messages[-1] += i
  95. summaries = []
  96. for i in range(len(messages)):
  97. message = messages[i]
  98. summary = summarize(message)
  99. summaries.append(summary)
  100. result = "\n".join(summaries)
  101. if self.get_prompt_tokens(prompt_messages=[UserPromptMessage(content=result)]) > max_tokens * 0.7:
  102. return self.summary(user_id=user_id, content=result)
  103. return result