advanced_prompt_transform.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303
  1. from collections.abc import Mapping, Sequence
  2. from typing import Optional, cast
  3. from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
  4. from core.file import file_manager
  5. from core.file.models import File
  6. from core.helper.code_executor.jinja2.jinja2_formatter import Jinja2Formatter
  7. from core.memory.token_buffer_memory import TokenBufferMemory
  8. from core.model_runtime.entities import (
  9. AssistantPromptMessage,
  10. PromptMessage,
  11. PromptMessageContent,
  12. PromptMessageRole,
  13. SystemPromptMessage,
  14. TextPromptMessageContent,
  15. UserPromptMessage,
  16. )
  17. from core.model_runtime.entities.message_entities import ImagePromptMessageContent
  18. from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate, MemoryConfig
  19. from core.prompt.prompt_transform import PromptTransform
  20. from core.prompt.utils.prompt_template_parser import PromptTemplateParser
  21. from core.workflow.entities.variable_pool import VariablePool
  22. class AdvancedPromptTransform(PromptTransform):
  23. """
  24. Advanced Prompt Transform for Workflow LLM Node.
  25. """
  26. def __init__(
  27. self,
  28. with_variable_tmpl: bool = False,
  29. image_detail_config: ImagePromptMessageContent.DETAIL = ImagePromptMessageContent.DETAIL.LOW,
  30. ) -> None:
  31. self.with_variable_tmpl = with_variable_tmpl
  32. self.image_detail_config = image_detail_config
  33. def get_prompt(
  34. self,
  35. *,
  36. prompt_template: Sequence[ChatModelMessage] | CompletionModelPromptTemplate,
  37. inputs: Mapping[str, str],
  38. query: str,
  39. files: Sequence[File],
  40. context: Optional[str],
  41. memory_config: Optional[MemoryConfig],
  42. memory: Optional[TokenBufferMemory],
  43. model_config: ModelConfigWithCredentialsEntity,
  44. image_detail_config: Optional[ImagePromptMessageContent.DETAIL] = None,
  45. ) -> list[PromptMessage]:
  46. prompt_messages = []
  47. if isinstance(prompt_template, CompletionModelPromptTemplate):
  48. prompt_messages = self._get_completion_model_prompt_messages(
  49. prompt_template=prompt_template,
  50. inputs=inputs,
  51. query=query,
  52. files=files,
  53. context=context,
  54. memory_config=memory_config,
  55. memory=memory,
  56. model_config=model_config,
  57. image_detail_config=image_detail_config,
  58. )
  59. elif isinstance(prompt_template, list) and all(isinstance(item, ChatModelMessage) for item in prompt_template):
  60. prompt_messages = self._get_chat_model_prompt_messages(
  61. prompt_template=prompt_template,
  62. inputs=inputs,
  63. query=query,
  64. files=files,
  65. context=context,
  66. memory_config=memory_config,
  67. memory=memory,
  68. model_config=model_config,
  69. image_detail_config=image_detail_config,
  70. )
  71. return prompt_messages
  72. def _get_completion_model_prompt_messages(
  73. self,
  74. prompt_template: CompletionModelPromptTemplate,
  75. inputs: Mapping[str, str],
  76. query: Optional[str],
  77. files: Sequence[File],
  78. context: Optional[str],
  79. memory_config: Optional[MemoryConfig],
  80. memory: Optional[TokenBufferMemory],
  81. model_config: ModelConfigWithCredentialsEntity,
  82. image_detail_config: Optional[ImagePromptMessageContent.DETAIL] = None,
  83. ) -> list[PromptMessage]:
  84. """
  85. Get completion model prompt messages.
  86. """
  87. raw_prompt = prompt_template.text
  88. prompt_messages: list[PromptMessage] = []
  89. if prompt_template.edition_type == "basic" or not prompt_template.edition_type:
  90. parser = PromptTemplateParser(template=raw_prompt, with_variable_tmpl=self.with_variable_tmpl)
  91. prompt_inputs: Mapping[str, str] = {k: inputs[k] for k in parser.variable_keys if k in inputs}
  92. prompt_inputs = self._set_context_variable(context, parser, prompt_inputs)
  93. if memory and memory_config and memory_config.role_prefix:
  94. role_prefix = memory_config.role_prefix
  95. prompt_inputs = self._set_histories_variable(
  96. memory=memory,
  97. memory_config=memory_config,
  98. raw_prompt=raw_prompt,
  99. role_prefix=role_prefix,
  100. parser=parser,
  101. prompt_inputs=prompt_inputs,
  102. model_config=model_config,
  103. )
  104. if query:
  105. prompt_inputs = self._set_query_variable(query, parser, prompt_inputs)
  106. prompt = parser.format(prompt_inputs)
  107. else:
  108. prompt = raw_prompt
  109. prompt_inputs = inputs
  110. prompt = Jinja2Formatter.format(prompt, prompt_inputs)
  111. if files:
  112. prompt_message_contents: list[PromptMessageContent] = []
  113. prompt_message_contents.append(TextPromptMessageContent(data=prompt))
  114. for file in files:
  115. prompt_message_contents.append(
  116. file_manager.to_prompt_message_content(file, image_detail_config=image_detail_config)
  117. )
  118. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  119. else:
  120. prompt_messages.append(UserPromptMessage(content=prompt))
  121. return prompt_messages
  122. def _get_chat_model_prompt_messages(
  123. self,
  124. prompt_template: list[ChatModelMessage],
  125. inputs: Mapping[str, str],
  126. query: Optional[str],
  127. files: Sequence[File],
  128. context: Optional[str],
  129. memory_config: Optional[MemoryConfig],
  130. memory: Optional[TokenBufferMemory],
  131. model_config: ModelConfigWithCredentialsEntity,
  132. image_detail_config: Optional[ImagePromptMessageContent.DETAIL] = None,
  133. ) -> list[PromptMessage]:
  134. """
  135. Get chat model prompt messages.
  136. """
  137. prompt_messages: list[PromptMessage] = []
  138. for prompt_item in prompt_template:
  139. raw_prompt = prompt_item.text
  140. if prompt_item.edition_type == "basic" or not prompt_item.edition_type:
  141. if self.with_variable_tmpl:
  142. vp = VariablePool()
  143. for k, v in inputs.items():
  144. if k.startswith("#"):
  145. vp.add(k[1:-1].split("."), v)
  146. raw_prompt = raw_prompt.replace("{{#context#}}", context or "")
  147. prompt = vp.convert_template(raw_prompt).text
  148. else:
  149. parser = PromptTemplateParser(template=raw_prompt, with_variable_tmpl=self.with_variable_tmpl)
  150. prompt_inputs: Mapping[str, str] = {k: inputs[k] for k in parser.variable_keys if k in inputs}
  151. prompt_inputs = self._set_context_variable(
  152. context=context, parser=parser, prompt_inputs=prompt_inputs
  153. )
  154. prompt = parser.format(prompt_inputs)
  155. elif prompt_item.edition_type == "jinja2":
  156. prompt = raw_prompt
  157. prompt_inputs = inputs
  158. prompt = Jinja2Formatter.format(template=prompt, inputs=prompt_inputs)
  159. else:
  160. raise ValueError(f"Invalid edition type: {prompt_item.edition_type}")
  161. if prompt_item.role == PromptMessageRole.USER:
  162. prompt_messages.append(UserPromptMessage(content=prompt))
  163. elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
  164. prompt_messages.append(SystemPromptMessage(content=prompt))
  165. elif prompt_item.role == PromptMessageRole.ASSISTANT:
  166. prompt_messages.append(AssistantPromptMessage(content=prompt))
  167. if query and memory_config and memory_config.query_prompt_template:
  168. parser = PromptTemplateParser(
  169. template=memory_config.query_prompt_template, with_variable_tmpl=self.with_variable_tmpl
  170. )
  171. prompt_inputs = {k: inputs[k] for k in parser.variable_keys if k in inputs}
  172. prompt_inputs["#sys.query#"] = query
  173. prompt_inputs = self._set_context_variable(context, parser, prompt_inputs)
  174. query = parser.format(prompt_inputs)
  175. if memory and memory_config:
  176. prompt_messages = self._append_chat_histories(memory, memory_config, prompt_messages, model_config)
  177. if files and query is not None:
  178. prompt_message_contents: list[PromptMessageContent] = []
  179. prompt_message_contents.append(TextPromptMessageContent(data=query))
  180. for file in files:
  181. prompt_message_contents.append(
  182. file_manager.to_prompt_message_content(file, image_detail_config=image_detail_config)
  183. )
  184. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  185. else:
  186. prompt_messages.append(UserPromptMessage(content=query))
  187. elif files:
  188. if not query:
  189. # get last message
  190. last_message = prompt_messages[-1] if prompt_messages else None
  191. if last_message and last_message.role == PromptMessageRole.USER:
  192. # get last user message content and add files
  193. prompt_message_contents = [TextPromptMessageContent(data=cast(str, last_message.content))]
  194. for file in files:
  195. prompt_message_contents.append(
  196. file_manager.to_prompt_message_content(file, image_detail_config=image_detail_config)
  197. )
  198. last_message.content = prompt_message_contents
  199. else:
  200. prompt_message_contents = [TextPromptMessageContent(data="")] # not for query
  201. for file in files:
  202. prompt_message_contents.append(
  203. file_manager.to_prompt_message_content(file, image_detail_config=image_detail_config)
  204. )
  205. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  206. else:
  207. prompt_message_contents = [TextPromptMessageContent(data=query)]
  208. for file in files:
  209. prompt_message_contents.append(
  210. file_manager.to_prompt_message_content(file, image_detail_config=image_detail_config)
  211. )
  212. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  213. elif query:
  214. prompt_messages.append(UserPromptMessage(content=query))
  215. return prompt_messages
  216. def _set_context_variable(
  217. self, context: str | None, parser: PromptTemplateParser, prompt_inputs: Mapping[str, str]
  218. ) -> Mapping[str, str]:
  219. prompt_inputs = dict(prompt_inputs)
  220. if "#context#" in parser.variable_keys:
  221. if context:
  222. prompt_inputs["#context#"] = context
  223. else:
  224. prompt_inputs["#context#"] = ""
  225. return prompt_inputs
  226. def _set_query_variable(
  227. self, query: str, parser: PromptTemplateParser, prompt_inputs: Mapping[str, str]
  228. ) -> Mapping[str, str]:
  229. prompt_inputs = dict(prompt_inputs)
  230. if "#query#" in parser.variable_keys:
  231. if query:
  232. prompt_inputs["#query#"] = query
  233. else:
  234. prompt_inputs["#query#"] = ""
  235. return prompt_inputs
  236. def _set_histories_variable(
  237. self,
  238. memory: TokenBufferMemory,
  239. memory_config: MemoryConfig,
  240. raw_prompt: str,
  241. role_prefix: MemoryConfig.RolePrefix,
  242. parser: PromptTemplateParser,
  243. prompt_inputs: Mapping[str, str],
  244. model_config: ModelConfigWithCredentialsEntity,
  245. ) -> Mapping[str, str]:
  246. prompt_inputs = dict(prompt_inputs)
  247. if "#histories#" in parser.variable_keys:
  248. if memory:
  249. inputs = {"#histories#": "", **prompt_inputs}
  250. parser = PromptTemplateParser(template=raw_prompt, with_variable_tmpl=self.with_variable_tmpl)
  251. prompt_inputs = {k: inputs[k] for k in parser.variable_keys if k in inputs}
  252. tmp_human_message = UserPromptMessage(content=parser.format(prompt_inputs))
  253. rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
  254. histories = self._get_history_messages_from_memory(
  255. memory=memory,
  256. memory_config=memory_config,
  257. max_token_limit=rest_tokens,
  258. human_prefix=role_prefix.user,
  259. ai_prefix=role_prefix.assistant,
  260. )
  261. prompt_inputs["#histories#"] = histories
  262. else:
  263. prompt_inputs["#histories#"] = ""
  264. return prompt_inputs