agent_service.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123
  1. from core.app.app_config.easy_ui_based_app.agent.manager import AgentConfigManager
  2. from core.tools.tool_manager import ToolManager
  3. from extensions.ext_database import db
  4. from models.account import Account
  5. from models.model import App, Conversation, EndUser, Message, MessageAgentThought
  6. class AgentService:
  7. @classmethod
  8. def get_agent_logs(cls, app_model: App,
  9. conversation_id: str,
  10. message_id: str) -> dict:
  11. """
  12. Service to get agent logs
  13. """
  14. conversation: Conversation = db.session.query(Conversation).filter(
  15. Conversation.id == conversation_id,
  16. Conversation.app_id == app_model.id,
  17. ).first()
  18. if not conversation:
  19. raise ValueError(f"Conversation not found: {conversation_id}")
  20. message: Message = db.session.query(Message).filter(
  21. Message.id == message_id,
  22. Message.conversation_id == conversation_id,
  23. ).first()
  24. if not message:
  25. raise ValueError(f"Message not found: {message_id}")
  26. agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
  27. if conversation.from_end_user_id:
  28. # only select name field
  29. executor = db.session.query(EndUser, EndUser.name).filter(
  30. EndUser.id == conversation.from_end_user_id
  31. ).first()
  32. else:
  33. executor = db.session.query(Account, Account.name).filter(
  34. Account.id == conversation.from_account_id
  35. ).first()
  36. if executor:
  37. executor = executor.name
  38. else:
  39. executor = 'Unknown'
  40. result = {
  41. 'meta': {
  42. 'status': 'success',
  43. 'executor': executor,
  44. 'start_time': message.created_at.isoformat(),
  45. 'elapsed_time': message.provider_response_latency,
  46. 'total_tokens': message.answer_tokens + message.message_tokens,
  47. 'agent_mode': app_model.app_model_config.agent_mode_dict.get('strategy', 'react'),
  48. 'iterations': len(agent_thoughts),
  49. },
  50. 'iterations': [],
  51. 'files': message.files,
  52. }
  53. agent_config = AgentConfigManager.convert(app_model.app_model_config.to_dict())
  54. agent_tools = agent_config.tools
  55. def find_agent_tool(tool_name: str):
  56. for agent_tool in agent_tools:
  57. if agent_tool.tool_name == tool_name:
  58. return agent_tool
  59. for agent_thought in agent_thoughts:
  60. tools = agent_thought.tools
  61. tool_labels = agent_thought.tool_labels
  62. tool_meta = agent_thought.tool_meta
  63. tool_inputs = agent_thought.tool_inputs_dict
  64. tool_outputs = agent_thought.tool_outputs_dict
  65. tool_calls = []
  66. for tool in tools:
  67. tool_name = tool
  68. tool_label = tool_labels.get(tool_name, tool_name)
  69. tool_input = tool_inputs.get(tool_name, {})
  70. tool_output = tool_outputs.get(tool_name, {})
  71. tool_meta_data = tool_meta.get(tool_name, {})
  72. tool_config = tool_meta_data.get('tool_config', {})
  73. tool_icon = ToolManager.get_tool_icon(
  74. tenant_id=app_model.tenant_id,
  75. provider_type=tool_config.get('tool_provider_type', ''),
  76. provider_id=tool_config.get('tool_provider', ''),
  77. )
  78. if not tool_icon:
  79. tool_entity = find_agent_tool(tool_name)
  80. if tool_entity:
  81. tool_icon = ToolManager.get_tool_icon(
  82. tenant_id=app_model.tenant_id,
  83. provider_type=tool_entity.provider_type,
  84. provider_id=tool_entity.provider_id,
  85. )
  86. tool_calls.append({
  87. 'status': 'success' if not tool_meta_data.get('error') else 'error',
  88. 'error': tool_meta_data.get('error'),
  89. 'time_cost': tool_meta_data.get('time_cost', 0),
  90. 'tool_name': tool_name,
  91. 'tool_label': tool_label,
  92. 'tool_input': tool_input,
  93. 'tool_output': tool_output,
  94. 'tool_parameters': tool_meta_data.get('tool_parameters', {}),
  95. 'tool_icon': tool_icon,
  96. })
  97. result['iterations'].append({
  98. 'tokens': agent_thought.tokens,
  99. 'tool_calls': tool_calls,
  100. 'tool_raw': {
  101. 'inputs': agent_thought.tool_input,
  102. 'outputs': agent_thought.observation,
  103. },
  104. 'thought': agent_thought.thought,
  105. 'created_at': agent_thought.created_at.isoformat(),
  106. 'files': agent_thought.files,
  107. })
  108. return result