hit_testing_service.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159
  1. import logging
  2. import time
  3. import numpy as np
  4. from sklearn.manifold import TSNE
  5. from core.embedding.cached_embedding import CacheEmbedding
  6. from core.model_manager import ModelManager
  7. from core.model_runtime.entities.model_entities import ModelType
  8. from core.rag.datasource.entity.embedding import Embeddings
  9. from core.rag.datasource.retrieval_service import RetrievalService
  10. from core.rag.models.document import Document
  11. from extensions.ext_database import db
  12. from models.account import Account
  13. from models.dataset import Dataset, DatasetQuery, DocumentSegment
  14. default_retrieval_model = {
  15. 'search_method': 'semantic_search',
  16. 'reranking_enable': False,
  17. 'reranking_model': {
  18. 'reranking_provider_name': '',
  19. 'reranking_model_name': ''
  20. },
  21. 'top_k': 2,
  22. 'score_threshold_enabled': False
  23. }
  24. class HitTestingService:
  25. @classmethod
  26. def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_model: dict, limit: int = 10) -> dict:
  27. if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  28. return {
  29. "query": {
  30. "content": query,
  31. "tsne_position": {'x': 0, 'y': 0},
  32. },
  33. "records": []
  34. }
  35. start = time.perf_counter()
  36. # get retrieval model , if the model is not setting , using default
  37. if not retrieval_model:
  38. retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
  39. # get embedding model
  40. model_manager = ModelManager()
  41. embedding_model = model_manager.get_model_instance(
  42. tenant_id=dataset.tenant_id,
  43. model_type=ModelType.TEXT_EMBEDDING,
  44. provider=dataset.embedding_model_provider,
  45. model=dataset.embedding_model
  46. )
  47. embeddings = CacheEmbedding(embedding_model)
  48. all_documents = RetrievalService.retrieve(retrival_method=retrieval_model['search_method'],
  49. dataset_id=dataset.id,
  50. query=query,
  51. top_k=retrieval_model['top_k'],
  52. score_threshold=retrieval_model['score_threshold']
  53. if retrieval_model['score_threshold_enabled'] else None,
  54. reranking_model=retrieval_model['reranking_model']
  55. if retrieval_model['reranking_enable'] else None
  56. )
  57. end = time.perf_counter()
  58. logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
  59. dataset_query = DatasetQuery(
  60. dataset_id=dataset.id,
  61. content=query,
  62. source='hit_testing',
  63. created_by_role='account',
  64. created_by=account.id
  65. )
  66. db.session.add(dataset_query)
  67. db.session.commit()
  68. return cls.compact_retrieve_response(dataset, embeddings, query, all_documents)
  69. @classmethod
  70. def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: list[Document]):
  71. text_embeddings = [
  72. embeddings.embed_query(query)
  73. ]
  74. text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))
  75. tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)
  76. query_position = tsne_position_data.pop(0)
  77. i = 0
  78. records = []
  79. for document in documents:
  80. index_node_id = document.metadata['doc_id']
  81. segment = db.session.query(DocumentSegment).filter(
  82. DocumentSegment.dataset_id == dataset.id,
  83. DocumentSegment.enabled == True,
  84. DocumentSegment.status == 'completed',
  85. DocumentSegment.index_node_id == index_node_id
  86. ).first()
  87. if not segment:
  88. i += 1
  89. continue
  90. record = {
  91. "segment": segment,
  92. "score": document.metadata.get('score', None),
  93. "tsne_position": tsne_position_data[i]
  94. }
  95. records.append(record)
  96. i += 1
  97. return {
  98. "query": {
  99. "content": query,
  100. "tsne_position": query_position,
  101. },
  102. "records": records
  103. }
  104. @classmethod
  105. def get_tsne_positions_from_embeddings(cls, embeddings: list):
  106. embedding_length = len(embeddings)
  107. if embedding_length <= 1:
  108. return [{'x': 0, 'y': 0}]
  109. noise = np.random.normal(0, 1e-4, np.array(embeddings).shape)
  110. concatenate_data = np.array(embeddings) + noise
  111. concatenate_data = concatenate_data.reshape(embedding_length, -1)
  112. perplexity = embedding_length / 2 + 1
  113. if perplexity >= embedding_length:
  114. perplexity = max(embedding_length - 1, 1)
  115. tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)
  116. data_tsne = tsne.fit_transform(concatenate_data)
  117. tsne_position_data = []
  118. for i in range(len(data_tsne)):
  119. tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})
  120. return tsne_position_data
  121. @classmethod
  122. def hit_testing_args_check(cls, args):
  123. query = args['query']
  124. if not query or len(query) > 250:
  125. raise ValueError('Query is required and cannot exceed 250 characters')