dataset_service.py 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366
  1. import datetime
  2. import json
  3. import logging
  4. import random
  5. import time
  6. import uuid
  7. from typing import Optional, cast
  8. from flask import current_app
  9. from flask_login import current_user
  10. from sqlalchemy import func
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_manager import ModelManager
  13. from core.model_runtime.entities.model_entities import ModelType
  14. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  15. from core.rag.datasource.keyword.keyword_factory import Keyword
  16. from core.rag.models.document import Document as RAGDocument
  17. from events.dataset_event import dataset_was_deleted
  18. from events.document_event import document_was_deleted
  19. from extensions.ext_database import db
  20. from extensions.ext_redis import redis_client
  21. from libs import helper
  22. from models.account import Account
  23. from models.dataset import (
  24. AppDatasetJoin,
  25. Dataset,
  26. DatasetCollectionBinding,
  27. DatasetProcessRule,
  28. DatasetQuery,
  29. Document,
  30. DocumentSegment,
  31. )
  32. from models.model import UploadFile
  33. from models.source import DataSourceBinding
  34. from services.errors.account import NoPermissionError
  35. from services.errors.dataset import DatasetNameDuplicateError
  36. from services.errors.document import DocumentIndexingError
  37. from services.errors.file import FileNotExistsError
  38. from services.feature_service import FeatureModel, FeatureService
  39. from services.tag_service import TagService
  40. from services.vector_service import VectorService
  41. from tasks.clean_notion_document_task import clean_notion_document_task
  42. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  43. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  44. from tasks.document_indexing_task import document_indexing_task
  45. from tasks.document_indexing_update_task import document_indexing_update_task
  46. from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
  47. from tasks.recover_document_indexing_task import recover_document_indexing_task
  48. from tasks.retry_document_indexing_task import retry_document_indexing_task
  49. class DatasetService:
  50. @staticmethod
  51. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
  52. if user:
  53. permission_filter = db.or_(Dataset.created_by == user.id,
  54. Dataset.permission == 'all_team_members')
  55. else:
  56. permission_filter = Dataset.permission == 'all_team_members'
  57. query = Dataset.query.filter(
  58. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  59. .order_by(Dataset.created_at.desc())
  60. if search:
  61. query = query.filter(db.and_(Dataset.name.ilike(f'%{search}%')))
  62. if tag_ids:
  63. target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids)
  64. if target_ids:
  65. query = query.filter(db.and_(Dataset.id.in_(target_ids)))
  66. else:
  67. return [], 0
  68. datasets = query.paginate(
  69. page=page,
  70. per_page=per_page,
  71. max_per_page=100,
  72. error_out=False
  73. )
  74. return datasets.items, datasets.total
  75. @staticmethod
  76. def get_process_rules(dataset_id):
  77. # get the latest process rule
  78. dataset_process_rule = db.session.query(DatasetProcessRule). \
  79. filter(DatasetProcessRule.dataset_id == dataset_id). \
  80. order_by(DatasetProcessRule.created_at.desc()). \
  81. limit(1). \
  82. one_or_none()
  83. if dataset_process_rule:
  84. mode = dataset_process_rule.mode
  85. rules = dataset_process_rule.rules_dict
  86. else:
  87. mode = DocumentService.DEFAULT_RULES['mode']
  88. rules = DocumentService.DEFAULT_RULES['rules']
  89. return {
  90. 'mode': mode,
  91. 'rules': rules
  92. }
  93. @staticmethod
  94. def get_datasets_by_ids(ids, tenant_id):
  95. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  96. Dataset.tenant_id == tenant_id).paginate(
  97. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  98. return datasets.items, datasets.total
  99. @staticmethod
  100. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  101. # check if dataset name already exists
  102. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  103. raise DatasetNameDuplicateError(
  104. f'Dataset with name {name} already exists.')
  105. embedding_model = None
  106. if indexing_technique == 'high_quality':
  107. model_manager = ModelManager()
  108. embedding_model = model_manager.get_default_model_instance(
  109. tenant_id=tenant_id,
  110. model_type=ModelType.TEXT_EMBEDDING
  111. )
  112. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  113. # dataset = Dataset(name=name, provider=provider, config=config)
  114. dataset.created_by = account.id
  115. dataset.updated_by = account.id
  116. dataset.tenant_id = tenant_id
  117. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  118. dataset.embedding_model = embedding_model.model if embedding_model else None
  119. db.session.add(dataset)
  120. db.session.commit()
  121. return dataset
  122. @staticmethod
  123. def get_dataset(dataset_id):
  124. dataset = Dataset.query.filter_by(
  125. id=dataset_id
  126. ).first()
  127. if dataset is None:
  128. return None
  129. else:
  130. return dataset
  131. @staticmethod
  132. def check_dataset_model_setting(dataset):
  133. if dataset.indexing_technique == 'high_quality':
  134. try:
  135. model_manager = ModelManager()
  136. model_manager.get_model_instance(
  137. tenant_id=dataset.tenant_id,
  138. provider=dataset.embedding_model_provider,
  139. model_type=ModelType.TEXT_EMBEDDING,
  140. model=dataset.embedding_model
  141. )
  142. except LLMBadRequestError:
  143. raise ValueError(
  144. "No Embedding Model available. Please configure a valid provider "
  145. "in the Settings -> Model Provider.")
  146. except ProviderTokenNotInitError as ex:
  147. raise ValueError(f"The dataset in unavailable, due to: "
  148. f"{ex.description}")
  149. @staticmethod
  150. def update_dataset(dataset_id, data, user):
  151. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  152. dataset = DatasetService.get_dataset(dataset_id)
  153. DatasetService.check_dataset_permission(dataset, user)
  154. action = None
  155. if dataset.indexing_technique != data['indexing_technique']:
  156. # if update indexing_technique
  157. if data['indexing_technique'] == 'economy':
  158. action = 'remove'
  159. filtered_data['embedding_model'] = None
  160. filtered_data['embedding_model_provider'] = None
  161. filtered_data['collection_binding_id'] = None
  162. elif data['indexing_technique'] == 'high_quality':
  163. action = 'add'
  164. # get embedding model setting
  165. try:
  166. model_manager = ModelManager()
  167. embedding_model = model_manager.get_model_instance(
  168. tenant_id=current_user.current_tenant_id,
  169. provider=data['embedding_model_provider'],
  170. model_type=ModelType.TEXT_EMBEDDING,
  171. model=data['embedding_model']
  172. )
  173. filtered_data['embedding_model'] = embedding_model.model
  174. filtered_data['embedding_model_provider'] = embedding_model.provider
  175. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  176. embedding_model.provider,
  177. embedding_model.model
  178. )
  179. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  180. except LLMBadRequestError:
  181. raise ValueError(
  182. "No Embedding Model available. Please configure a valid provider "
  183. "in the Settings -> Model Provider.")
  184. except ProviderTokenNotInitError as ex:
  185. raise ValueError(ex.description)
  186. else:
  187. if data['embedding_model_provider'] != dataset.embedding_model_provider or \
  188. data['embedding_model'] != dataset.embedding_model:
  189. action = 'update'
  190. try:
  191. model_manager = ModelManager()
  192. embedding_model = model_manager.get_model_instance(
  193. tenant_id=current_user.current_tenant_id,
  194. provider=data['embedding_model_provider'],
  195. model_type=ModelType.TEXT_EMBEDDING,
  196. model=data['embedding_model']
  197. )
  198. filtered_data['embedding_model'] = embedding_model.model
  199. filtered_data['embedding_model_provider'] = embedding_model.provider
  200. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  201. embedding_model.provider,
  202. embedding_model.model
  203. )
  204. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  205. except LLMBadRequestError:
  206. raise ValueError(
  207. "No Embedding Model available. Please configure a valid provider "
  208. "in the Settings -> Model Provider.")
  209. except ProviderTokenNotInitError as ex:
  210. raise ValueError(ex.description)
  211. filtered_data['updated_by'] = user.id
  212. filtered_data['updated_at'] = datetime.datetime.now()
  213. # update Retrieval model
  214. filtered_data['retrieval_model'] = data['retrieval_model']
  215. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  216. db.session.commit()
  217. if action:
  218. deal_dataset_vector_index_task.delay(dataset_id, action)
  219. return dataset
  220. @staticmethod
  221. def delete_dataset(dataset_id, user):
  222. # todo: cannot delete dataset if it is being processed
  223. dataset = DatasetService.get_dataset(dataset_id)
  224. if dataset is None:
  225. return False
  226. DatasetService.check_dataset_permission(dataset, user)
  227. dataset_was_deleted.send(dataset)
  228. db.session.delete(dataset)
  229. db.session.commit()
  230. return True
  231. @staticmethod
  232. def check_dataset_permission(dataset, user):
  233. if dataset.tenant_id != user.current_tenant_id:
  234. logging.debug(
  235. f'User {user.id} does not have permission to access dataset {dataset.id}')
  236. raise NoPermissionError(
  237. 'You do not have permission to access this dataset.')
  238. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  239. logging.debug(
  240. f'User {user.id} does not have permission to access dataset {dataset.id}')
  241. raise NoPermissionError(
  242. 'You do not have permission to access this dataset.')
  243. @staticmethod
  244. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  245. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  246. .order_by(db.desc(DatasetQuery.created_at)) \
  247. .paginate(
  248. page=page, per_page=per_page, max_per_page=100, error_out=False
  249. )
  250. return dataset_queries.items, dataset_queries.total
  251. @staticmethod
  252. def get_related_apps(dataset_id: str):
  253. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  254. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  255. class DocumentService:
  256. DEFAULT_RULES = {
  257. 'mode': 'custom',
  258. 'rules': {
  259. 'pre_processing_rules': [
  260. {'id': 'remove_extra_spaces', 'enabled': True},
  261. {'id': 'remove_urls_emails', 'enabled': False}
  262. ],
  263. 'segmentation': {
  264. 'delimiter': '\n',
  265. 'max_tokens': 500,
  266. 'chunk_overlap': 50
  267. }
  268. }
  269. }
  270. DOCUMENT_METADATA_SCHEMA = {
  271. "book": {
  272. "title": str,
  273. "language": str,
  274. "author": str,
  275. "publisher": str,
  276. "publication_date": str,
  277. "isbn": str,
  278. "category": str,
  279. },
  280. "web_page": {
  281. "title": str,
  282. "url": str,
  283. "language": str,
  284. "publish_date": str,
  285. "author/publisher": str,
  286. "topic/keywords": str,
  287. "description": str,
  288. },
  289. "paper": {
  290. "title": str,
  291. "language": str,
  292. "author": str,
  293. "publish_date": str,
  294. "journal/conference_name": str,
  295. "volume/issue/page_numbers": str,
  296. "doi": str,
  297. "topic/keywords": str,
  298. "abstract": str,
  299. },
  300. "social_media_post": {
  301. "platform": str,
  302. "author/username": str,
  303. "publish_date": str,
  304. "post_url": str,
  305. "topic/tags": str,
  306. },
  307. "wikipedia_entry": {
  308. "title": str,
  309. "language": str,
  310. "web_page_url": str,
  311. "last_edit_date": str,
  312. "editor/contributor": str,
  313. "summary/introduction": str,
  314. },
  315. "personal_document": {
  316. "title": str,
  317. "author": str,
  318. "creation_date": str,
  319. "last_modified_date": str,
  320. "document_type": str,
  321. "tags/category": str,
  322. },
  323. "business_document": {
  324. "title": str,
  325. "author": str,
  326. "creation_date": str,
  327. "last_modified_date": str,
  328. "document_type": str,
  329. "department/team": str,
  330. },
  331. "im_chat_log": {
  332. "chat_platform": str,
  333. "chat_participants/group_name": str,
  334. "start_date": str,
  335. "end_date": str,
  336. "summary": str,
  337. },
  338. "synced_from_notion": {
  339. "title": str,
  340. "language": str,
  341. "author/creator": str,
  342. "creation_date": str,
  343. "last_modified_date": str,
  344. "notion_page_link": str,
  345. "category/tags": str,
  346. "description": str,
  347. },
  348. "synced_from_github": {
  349. "repository_name": str,
  350. "repository_description": str,
  351. "repository_owner/organization": str,
  352. "code_filename": str,
  353. "code_file_path": str,
  354. "programming_language": str,
  355. "github_link": str,
  356. "open_source_license": str,
  357. "commit_date": str,
  358. "commit_author": str,
  359. },
  360. "others": dict
  361. }
  362. @staticmethod
  363. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  364. document = db.session.query(Document).filter(
  365. Document.id == document_id,
  366. Document.dataset_id == dataset_id
  367. ).first()
  368. return document
  369. @staticmethod
  370. def get_document_by_id(document_id: str) -> Optional[Document]:
  371. document = db.session.query(Document).filter(
  372. Document.id == document_id
  373. ).first()
  374. return document
  375. @staticmethod
  376. def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
  377. documents = db.session.query(Document).filter(
  378. Document.dataset_id == dataset_id,
  379. Document.enabled == True
  380. ).all()
  381. return documents
  382. @staticmethod
  383. def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
  384. documents = db.session.query(Document).filter(
  385. Document.dataset_id == dataset_id,
  386. Document.indexing_status == 'error' or Document.indexing_status == 'paused'
  387. ).all()
  388. return documents
  389. @staticmethod
  390. def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
  391. documents = db.session.query(Document).filter(
  392. Document.batch == batch,
  393. Document.dataset_id == dataset_id,
  394. Document.tenant_id == current_user.current_tenant_id
  395. ).all()
  396. return documents
  397. @staticmethod
  398. def get_document_file_detail(file_id: str):
  399. file_detail = db.session.query(UploadFile). \
  400. filter(UploadFile.id == file_id). \
  401. one_or_none()
  402. return file_detail
  403. @staticmethod
  404. def check_archived(document):
  405. if document.archived:
  406. return True
  407. else:
  408. return False
  409. @staticmethod
  410. def delete_document(document):
  411. # trigger document_was_deleted signal
  412. document_was_deleted.send(document.id, dataset_id=document.dataset_id, doc_form=document.doc_form)
  413. db.session.delete(document)
  414. db.session.commit()
  415. @staticmethod
  416. def pause_document(document):
  417. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  418. raise DocumentIndexingError()
  419. # update document to be paused
  420. document.is_paused = True
  421. document.paused_by = current_user.id
  422. document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  423. db.session.add(document)
  424. db.session.commit()
  425. # set document paused flag
  426. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  427. redis_client.setnx(indexing_cache_key, "True")
  428. @staticmethod
  429. def recover_document(document):
  430. if not document.is_paused:
  431. raise DocumentIndexingError()
  432. # update document to be recover
  433. document.is_paused = False
  434. document.paused_by = None
  435. document.paused_at = None
  436. db.session.add(document)
  437. db.session.commit()
  438. # delete paused flag
  439. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  440. redis_client.delete(indexing_cache_key)
  441. # trigger async task
  442. recover_document_indexing_task.delay(document.dataset_id, document.id)
  443. @staticmethod
  444. def retry_document(dataset_id: str, documents: list[Document]):
  445. for document in documents:
  446. # retry document indexing
  447. document.indexing_status = 'waiting'
  448. db.session.add(document)
  449. db.session.commit()
  450. # add retry flag
  451. retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id)
  452. redis_client.setex(retry_indexing_cache_key, 600, 1)
  453. # trigger async task
  454. document_ids = [document.id for document in documents]
  455. retry_document_indexing_task.delay(dataset_id, document_ids)
  456. @staticmethod
  457. def get_documents_position(dataset_id):
  458. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  459. if document:
  460. return document.position + 1
  461. else:
  462. return 1
  463. @staticmethod
  464. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  465. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  466. created_from: str = 'web'):
  467. # check document limit
  468. features = FeatureService.get_features(current_user.current_tenant_id)
  469. if features.billing.enabled:
  470. if 'original_document_id' not in document_data or not document_data['original_document_id']:
  471. count = 0
  472. if document_data["data_source"]["type"] == "upload_file":
  473. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  474. count = len(upload_file_list)
  475. elif document_data["data_source"]["type"] == "notion_import":
  476. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  477. for notion_info in notion_info_list:
  478. count = count + len(notion_info['pages'])
  479. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  480. if count > batch_upload_limit:
  481. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  482. DocumentService.check_documents_upload_quota(count, features)
  483. # if dataset is empty, update dataset data_source_type
  484. if not dataset.data_source_type:
  485. dataset.data_source_type = document_data["data_source"]["type"]
  486. if not dataset.indexing_technique:
  487. if 'indexing_technique' not in document_data \
  488. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  489. raise ValueError("Indexing technique is required")
  490. dataset.indexing_technique = document_data["indexing_technique"]
  491. if document_data["indexing_technique"] == 'high_quality':
  492. model_manager = ModelManager()
  493. embedding_model = model_manager.get_default_model_instance(
  494. tenant_id=current_user.current_tenant_id,
  495. model_type=ModelType.TEXT_EMBEDDING
  496. )
  497. dataset.embedding_model = embedding_model.model
  498. dataset.embedding_model_provider = embedding_model.provider
  499. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  500. embedding_model.provider,
  501. embedding_model.model
  502. )
  503. dataset.collection_binding_id = dataset_collection_binding.id
  504. if not dataset.retrieval_model:
  505. default_retrieval_model = {
  506. 'search_method': 'semantic_search',
  507. 'reranking_enable': False,
  508. 'reranking_model': {
  509. 'reranking_provider_name': '',
  510. 'reranking_model_name': ''
  511. },
  512. 'top_k': 2,
  513. 'score_threshold_enabled': False
  514. }
  515. dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
  516. 'retrieval_model') else default_retrieval_model
  517. documents = []
  518. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  519. if 'original_document_id' in document_data and document_data["original_document_id"]:
  520. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  521. documents.append(document)
  522. else:
  523. # save process rule
  524. if not dataset_process_rule:
  525. process_rule = document_data["process_rule"]
  526. if process_rule["mode"] == "custom":
  527. dataset_process_rule = DatasetProcessRule(
  528. dataset_id=dataset.id,
  529. mode=process_rule["mode"],
  530. rules=json.dumps(process_rule["rules"]),
  531. created_by=account.id
  532. )
  533. elif process_rule["mode"] == "automatic":
  534. dataset_process_rule = DatasetProcessRule(
  535. dataset_id=dataset.id,
  536. mode=process_rule["mode"],
  537. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  538. created_by=account.id
  539. )
  540. db.session.add(dataset_process_rule)
  541. db.session.commit()
  542. position = DocumentService.get_documents_position(dataset.id)
  543. document_ids = []
  544. duplicate_document_ids = []
  545. if document_data["data_source"]["type"] == "upload_file":
  546. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  547. for file_id in upload_file_list:
  548. file = db.session.query(UploadFile).filter(
  549. UploadFile.tenant_id == dataset.tenant_id,
  550. UploadFile.id == file_id
  551. ).first()
  552. # raise error if file not found
  553. if not file:
  554. raise FileNotExistsError()
  555. file_name = file.name
  556. data_source_info = {
  557. "upload_file_id": file_id,
  558. }
  559. # check duplicate
  560. if document_data.get('duplicate', False):
  561. document = Document.query.filter_by(
  562. dataset_id=dataset.id,
  563. tenant_id=current_user.current_tenant_id,
  564. data_source_type='upload_file',
  565. enabled=True,
  566. name=file_name
  567. ).first()
  568. if document:
  569. document.dataset_process_rule_id = dataset_process_rule.id
  570. document.updated_at = datetime.datetime.utcnow()
  571. document.created_from = created_from
  572. document.doc_form = document_data['doc_form']
  573. document.doc_language = document_data['doc_language']
  574. document.data_source_info = json.dumps(data_source_info)
  575. document.batch = batch
  576. document.indexing_status = 'waiting'
  577. db.session.add(document)
  578. documents.append(document)
  579. duplicate_document_ids.append(document.id)
  580. continue
  581. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  582. document_data["data_source"]["type"],
  583. document_data["doc_form"],
  584. document_data["doc_language"],
  585. data_source_info, created_from, position,
  586. account, file_name, batch)
  587. db.session.add(document)
  588. db.session.flush()
  589. document_ids.append(document.id)
  590. documents.append(document)
  591. position += 1
  592. elif document_data["data_source"]["type"] == "notion_import":
  593. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  594. exist_page_ids = []
  595. exist_document = dict()
  596. documents = Document.query.filter_by(
  597. dataset_id=dataset.id,
  598. tenant_id=current_user.current_tenant_id,
  599. data_source_type='notion_import',
  600. enabled=True
  601. ).all()
  602. if documents:
  603. for document in documents:
  604. data_source_info = json.loads(document.data_source_info)
  605. exist_page_ids.append(data_source_info['notion_page_id'])
  606. exist_document[data_source_info['notion_page_id']] = document.id
  607. for notion_info in notion_info_list:
  608. workspace_id = notion_info['workspace_id']
  609. data_source_binding = DataSourceBinding.query.filter(
  610. db.and_(
  611. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  612. DataSourceBinding.provider == 'notion',
  613. DataSourceBinding.disabled == False,
  614. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  615. )
  616. ).first()
  617. if not data_source_binding:
  618. raise ValueError('Data source binding not found.')
  619. for page in notion_info['pages']:
  620. if page['page_id'] not in exist_page_ids:
  621. data_source_info = {
  622. "notion_workspace_id": workspace_id,
  623. "notion_page_id": page['page_id'],
  624. "notion_page_icon": page['page_icon'],
  625. "type": page['type']
  626. }
  627. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  628. document_data["data_source"]["type"],
  629. document_data["doc_form"],
  630. document_data["doc_language"],
  631. data_source_info, created_from, position,
  632. account, page['page_name'], batch)
  633. db.session.add(document)
  634. db.session.flush()
  635. document_ids.append(document.id)
  636. documents.append(document)
  637. position += 1
  638. else:
  639. exist_document.pop(page['page_id'])
  640. # delete not selected documents
  641. if len(exist_document) > 0:
  642. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  643. db.session.commit()
  644. # trigger async task
  645. if document_ids:
  646. document_indexing_task.delay(dataset.id, document_ids)
  647. if duplicate_document_ids:
  648. duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
  649. return documents, batch
  650. @staticmethod
  651. def check_documents_upload_quota(count: int, features: FeatureModel):
  652. can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
  653. if count > can_upload_size:
  654. raise ValueError(
  655. f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.')
  656. @staticmethod
  657. def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  658. document_language: str, data_source_info: dict, created_from: str, position: int,
  659. account: Account,
  660. name: str, batch: str):
  661. document = Document(
  662. tenant_id=dataset.tenant_id,
  663. dataset_id=dataset.id,
  664. position=position,
  665. data_source_type=data_source_type,
  666. data_source_info=json.dumps(data_source_info),
  667. dataset_process_rule_id=process_rule_id,
  668. batch=batch,
  669. name=name,
  670. created_from=created_from,
  671. created_by=account.id,
  672. doc_form=document_form,
  673. doc_language=document_language
  674. )
  675. return document
  676. @staticmethod
  677. def get_tenant_documents_count():
  678. documents_count = Document.query.filter(Document.completed_at.isnot(None),
  679. Document.enabled == True,
  680. Document.archived == False,
  681. Document.tenant_id == current_user.current_tenant_id).count()
  682. return documents_count
  683. @staticmethod
  684. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  685. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  686. created_from: str = 'web'):
  687. DatasetService.check_dataset_model_setting(dataset)
  688. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  689. if document.display_status != 'available':
  690. raise ValueError("Document is not available")
  691. # update document name
  692. if 'name' in document_data and document_data['name']:
  693. document.name = document_data['name']
  694. # save process rule
  695. if 'process_rule' in document_data and document_data['process_rule']:
  696. process_rule = document_data["process_rule"]
  697. if process_rule["mode"] == "custom":
  698. dataset_process_rule = DatasetProcessRule(
  699. dataset_id=dataset.id,
  700. mode=process_rule["mode"],
  701. rules=json.dumps(process_rule["rules"]),
  702. created_by=account.id
  703. )
  704. elif process_rule["mode"] == "automatic":
  705. dataset_process_rule = DatasetProcessRule(
  706. dataset_id=dataset.id,
  707. mode=process_rule["mode"],
  708. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  709. created_by=account.id
  710. )
  711. db.session.add(dataset_process_rule)
  712. db.session.commit()
  713. document.dataset_process_rule_id = dataset_process_rule.id
  714. # update document data source
  715. if 'data_source' in document_data and document_data['data_source']:
  716. file_name = ''
  717. data_source_info = {}
  718. if document_data["data_source"]["type"] == "upload_file":
  719. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  720. for file_id in upload_file_list:
  721. file = db.session.query(UploadFile).filter(
  722. UploadFile.tenant_id == dataset.tenant_id,
  723. UploadFile.id == file_id
  724. ).first()
  725. # raise error if file not found
  726. if not file:
  727. raise FileNotExistsError()
  728. file_name = file.name
  729. data_source_info = {
  730. "upload_file_id": file_id,
  731. }
  732. elif document_data["data_source"]["type"] == "notion_import":
  733. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  734. for notion_info in notion_info_list:
  735. workspace_id = notion_info['workspace_id']
  736. data_source_binding = DataSourceBinding.query.filter(
  737. db.and_(
  738. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  739. DataSourceBinding.provider == 'notion',
  740. DataSourceBinding.disabled == False,
  741. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  742. )
  743. ).first()
  744. if not data_source_binding:
  745. raise ValueError('Data source binding not found.')
  746. for page in notion_info['pages']:
  747. data_source_info = {
  748. "notion_workspace_id": workspace_id,
  749. "notion_page_id": page['page_id'],
  750. "notion_page_icon": page['page_icon'],
  751. "type": page['type']
  752. }
  753. document.data_source_type = document_data["data_source"]["type"]
  754. document.data_source_info = json.dumps(data_source_info)
  755. document.name = file_name
  756. # update document to be waiting
  757. document.indexing_status = 'waiting'
  758. document.completed_at = None
  759. document.processing_started_at = None
  760. document.parsing_completed_at = None
  761. document.cleaning_completed_at = None
  762. document.splitting_completed_at = None
  763. document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  764. document.created_from = created_from
  765. document.doc_form = document_data['doc_form']
  766. db.session.add(document)
  767. db.session.commit()
  768. # update document segment
  769. update_params = {
  770. DocumentSegment.status: 're_segment'
  771. }
  772. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  773. db.session.commit()
  774. # trigger async task
  775. document_indexing_update_task.delay(document.dataset_id, document.id)
  776. return document
  777. @staticmethod
  778. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  779. features = FeatureService.get_features(current_user.current_tenant_id)
  780. if features.billing.enabled:
  781. count = 0
  782. if document_data["data_source"]["type"] == "upload_file":
  783. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  784. count = len(upload_file_list)
  785. elif document_data["data_source"]["type"] == "notion_import":
  786. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  787. for notion_info in notion_info_list:
  788. count = count + len(notion_info['pages'])
  789. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  790. if count > batch_upload_limit:
  791. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  792. DocumentService.check_documents_upload_quota(count, features)
  793. embedding_model = None
  794. dataset_collection_binding_id = None
  795. retrieval_model = None
  796. if document_data['indexing_technique'] == 'high_quality':
  797. model_manager = ModelManager()
  798. embedding_model = model_manager.get_default_model_instance(
  799. tenant_id=current_user.current_tenant_id,
  800. model_type=ModelType.TEXT_EMBEDDING
  801. )
  802. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  803. embedding_model.provider,
  804. embedding_model.model
  805. )
  806. dataset_collection_binding_id = dataset_collection_binding.id
  807. if 'retrieval_model' in document_data and document_data['retrieval_model']:
  808. retrieval_model = document_data['retrieval_model']
  809. else:
  810. default_retrieval_model = {
  811. 'search_method': 'semantic_search',
  812. 'reranking_enable': False,
  813. 'reranking_model': {
  814. 'reranking_provider_name': '',
  815. 'reranking_model_name': ''
  816. },
  817. 'top_k': 2,
  818. 'score_threshold_enabled': False
  819. }
  820. retrieval_model = default_retrieval_model
  821. # save dataset
  822. dataset = Dataset(
  823. tenant_id=tenant_id,
  824. name='',
  825. data_source_type=document_data["data_source"]["type"],
  826. indexing_technique=document_data["indexing_technique"],
  827. created_by=account.id,
  828. embedding_model=embedding_model.model if embedding_model else None,
  829. embedding_model_provider=embedding_model.provider if embedding_model else None,
  830. collection_binding_id=dataset_collection_binding_id,
  831. retrieval_model=retrieval_model
  832. )
  833. db.session.add(dataset)
  834. db.session.flush()
  835. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  836. cut_length = 18
  837. cut_name = documents[0].name[:cut_length]
  838. dataset.name = cut_name + '...'
  839. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  840. db.session.commit()
  841. return dataset, documents, batch
  842. @classmethod
  843. def document_create_args_validate(cls, args: dict):
  844. if 'original_document_id' not in args or not args['original_document_id']:
  845. DocumentService.data_source_args_validate(args)
  846. DocumentService.process_rule_args_validate(args)
  847. else:
  848. if ('data_source' not in args and not args['data_source']) \
  849. and ('process_rule' not in args and not args['process_rule']):
  850. raise ValueError("Data source or Process rule is required")
  851. else:
  852. if 'data_source' in args and args['data_source']:
  853. DocumentService.data_source_args_validate(args)
  854. if 'process_rule' in args and args['process_rule']:
  855. DocumentService.process_rule_args_validate(args)
  856. @classmethod
  857. def data_source_args_validate(cls, args: dict):
  858. if 'data_source' not in args or not args['data_source']:
  859. raise ValueError("Data source is required")
  860. if not isinstance(args['data_source'], dict):
  861. raise ValueError("Data source is invalid")
  862. if 'type' not in args['data_source'] or not args['data_source']['type']:
  863. raise ValueError("Data source type is required")
  864. if args['data_source']['type'] not in Document.DATA_SOURCES:
  865. raise ValueError("Data source type is invalid")
  866. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  867. raise ValueError("Data source info is required")
  868. if args['data_source']['type'] == 'upload_file':
  869. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  870. 'file_info_list']:
  871. raise ValueError("File source info is required")
  872. if args['data_source']['type'] == 'notion_import':
  873. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  874. 'notion_info_list']:
  875. raise ValueError("Notion source info is required")
  876. @classmethod
  877. def process_rule_args_validate(cls, args: dict):
  878. if 'process_rule' not in args or not args['process_rule']:
  879. raise ValueError("Process rule is required")
  880. if not isinstance(args['process_rule'], dict):
  881. raise ValueError("Process rule is invalid")
  882. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  883. raise ValueError("Process rule mode is required")
  884. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  885. raise ValueError("Process rule mode is invalid")
  886. if args['process_rule']['mode'] == 'automatic':
  887. args['process_rule']['rules'] = {}
  888. else:
  889. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  890. raise ValueError("Process rule rules is required")
  891. if not isinstance(args['process_rule']['rules'], dict):
  892. raise ValueError("Process rule rules is invalid")
  893. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  894. or args['process_rule']['rules']['pre_processing_rules'] is None:
  895. raise ValueError("Process rule pre_processing_rules is required")
  896. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  897. raise ValueError("Process rule pre_processing_rules is invalid")
  898. unique_pre_processing_rule_dicts = {}
  899. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  900. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  901. raise ValueError("Process rule pre_processing_rules id is required")
  902. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  903. raise ValueError("Process rule pre_processing_rules id is invalid")
  904. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  905. raise ValueError("Process rule pre_processing_rules enabled is required")
  906. if not isinstance(pre_processing_rule['enabled'], bool):
  907. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  908. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  909. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  910. if 'segmentation' not in args['process_rule']['rules'] \
  911. or args['process_rule']['rules']['segmentation'] is None:
  912. raise ValueError("Process rule segmentation is required")
  913. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  914. raise ValueError("Process rule segmentation is invalid")
  915. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  916. or not args['process_rule']['rules']['segmentation']['separator']:
  917. raise ValueError("Process rule segmentation separator is required")
  918. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  919. raise ValueError("Process rule segmentation separator is invalid")
  920. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  921. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  922. raise ValueError("Process rule segmentation max_tokens is required")
  923. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  924. raise ValueError("Process rule segmentation max_tokens is invalid")
  925. @classmethod
  926. def estimate_args_validate(cls, args: dict):
  927. if 'info_list' not in args or not args['info_list']:
  928. raise ValueError("Data source info is required")
  929. if not isinstance(args['info_list'], dict):
  930. raise ValueError("Data info is invalid")
  931. if 'process_rule' not in args or not args['process_rule']:
  932. raise ValueError("Process rule is required")
  933. if not isinstance(args['process_rule'], dict):
  934. raise ValueError("Process rule is invalid")
  935. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  936. raise ValueError("Process rule mode is required")
  937. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  938. raise ValueError("Process rule mode is invalid")
  939. if args['process_rule']['mode'] == 'automatic':
  940. args['process_rule']['rules'] = {}
  941. else:
  942. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  943. raise ValueError("Process rule rules is required")
  944. if not isinstance(args['process_rule']['rules'], dict):
  945. raise ValueError("Process rule rules is invalid")
  946. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  947. or args['process_rule']['rules']['pre_processing_rules'] is None:
  948. raise ValueError("Process rule pre_processing_rules is required")
  949. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  950. raise ValueError("Process rule pre_processing_rules is invalid")
  951. unique_pre_processing_rule_dicts = {}
  952. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  953. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  954. raise ValueError("Process rule pre_processing_rules id is required")
  955. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  956. raise ValueError("Process rule pre_processing_rules id is invalid")
  957. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  958. raise ValueError("Process rule pre_processing_rules enabled is required")
  959. if not isinstance(pre_processing_rule['enabled'], bool):
  960. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  961. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  962. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  963. if 'segmentation' not in args['process_rule']['rules'] \
  964. or args['process_rule']['rules']['segmentation'] is None:
  965. raise ValueError("Process rule segmentation is required")
  966. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  967. raise ValueError("Process rule segmentation is invalid")
  968. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  969. or not args['process_rule']['rules']['segmentation']['separator']:
  970. raise ValueError("Process rule segmentation separator is required")
  971. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  972. raise ValueError("Process rule segmentation separator is invalid")
  973. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  974. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  975. raise ValueError("Process rule segmentation max_tokens is required")
  976. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  977. raise ValueError("Process rule segmentation max_tokens is invalid")
  978. class SegmentService:
  979. @classmethod
  980. def segment_create_args_validate(cls, args: dict, document: Document):
  981. if document.doc_form == 'qa_model':
  982. if 'answer' not in args or not args['answer']:
  983. raise ValueError("Answer is required")
  984. if not args['answer'].strip():
  985. raise ValueError("Answer is empty")
  986. if 'content' not in args or not args['content'] or not args['content'].strip():
  987. raise ValueError("Content is empty")
  988. @classmethod
  989. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  990. content = args['content']
  991. doc_id = str(uuid.uuid4())
  992. segment_hash = helper.generate_text_hash(content)
  993. tokens = 0
  994. if dataset.indexing_technique == 'high_quality':
  995. model_manager = ModelManager()
  996. embedding_model = model_manager.get_model_instance(
  997. tenant_id=current_user.current_tenant_id,
  998. provider=dataset.embedding_model_provider,
  999. model_type=ModelType.TEXT_EMBEDDING,
  1000. model=dataset.embedding_model
  1001. )
  1002. # calc embedding use tokens
  1003. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  1004. tokens = model_type_instance.get_num_tokens(
  1005. model=embedding_model.model,
  1006. credentials=embedding_model.credentials,
  1007. texts=[content]
  1008. )
  1009. lock_name = 'add_segment_lock_document_id_{}'.format(document.id)
  1010. with redis_client.lock(lock_name, timeout=600):
  1011. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1012. DocumentSegment.document_id == document.id
  1013. ).scalar()
  1014. segment_document = DocumentSegment(
  1015. tenant_id=current_user.current_tenant_id,
  1016. dataset_id=document.dataset_id,
  1017. document_id=document.id,
  1018. index_node_id=doc_id,
  1019. index_node_hash=segment_hash,
  1020. position=max_position + 1 if max_position else 1,
  1021. content=content,
  1022. word_count=len(content),
  1023. tokens=tokens,
  1024. status='completed',
  1025. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1026. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1027. created_by=current_user.id
  1028. )
  1029. if document.doc_form == 'qa_model':
  1030. segment_document.answer = args['answer']
  1031. db.session.add(segment_document)
  1032. db.session.commit()
  1033. # save vector index
  1034. try:
  1035. VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
  1036. except Exception as e:
  1037. logging.exception("create segment index failed")
  1038. segment_document.enabled = False
  1039. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1040. segment_document.status = 'error'
  1041. segment_document.error = str(e)
  1042. db.session.commit()
  1043. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  1044. return segment
  1045. @classmethod
  1046. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  1047. lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)
  1048. with redis_client.lock(lock_name, timeout=600):
  1049. embedding_model = None
  1050. if dataset.indexing_technique == 'high_quality':
  1051. model_manager = ModelManager()
  1052. embedding_model = model_manager.get_model_instance(
  1053. tenant_id=current_user.current_tenant_id,
  1054. provider=dataset.embedding_model_provider,
  1055. model_type=ModelType.TEXT_EMBEDDING,
  1056. model=dataset.embedding_model
  1057. )
  1058. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1059. DocumentSegment.document_id == document.id
  1060. ).scalar()
  1061. pre_segment_data_list = []
  1062. segment_data_list = []
  1063. keywords_list = []
  1064. for segment_item in segments:
  1065. content = segment_item['content']
  1066. doc_id = str(uuid.uuid4())
  1067. segment_hash = helper.generate_text_hash(content)
  1068. tokens = 0
  1069. if dataset.indexing_technique == 'high_quality' and embedding_model:
  1070. # calc embedding use tokens
  1071. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  1072. tokens = model_type_instance.get_num_tokens(
  1073. model=embedding_model.model,
  1074. credentials=embedding_model.credentials,
  1075. texts=[content]
  1076. )
  1077. segment_document = DocumentSegment(
  1078. tenant_id=current_user.current_tenant_id,
  1079. dataset_id=document.dataset_id,
  1080. document_id=document.id,
  1081. index_node_id=doc_id,
  1082. index_node_hash=segment_hash,
  1083. position=max_position + 1 if max_position else 1,
  1084. content=content,
  1085. word_count=len(content),
  1086. tokens=tokens,
  1087. status='completed',
  1088. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1089. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1090. created_by=current_user.id
  1091. )
  1092. if document.doc_form == 'qa_model':
  1093. segment_document.answer = segment_item['answer']
  1094. db.session.add(segment_document)
  1095. segment_data_list.append(segment_document)
  1096. pre_segment_data_list.append(segment_document)
  1097. keywords_list.append(segment_item['keywords'])
  1098. try:
  1099. # save vector index
  1100. VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
  1101. except Exception as e:
  1102. logging.exception("create segment index failed")
  1103. for segment_document in segment_data_list:
  1104. segment_document.enabled = False
  1105. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1106. segment_document.status = 'error'
  1107. segment_document.error = str(e)
  1108. db.session.commit()
  1109. return segment_data_list
  1110. @classmethod
  1111. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  1112. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  1113. cache_result = redis_client.get(indexing_cache_key)
  1114. if cache_result is not None:
  1115. raise ValueError("Segment is indexing, please try again later")
  1116. try:
  1117. content = args['content']
  1118. if segment.content == content:
  1119. if document.doc_form == 'qa_model':
  1120. segment.answer = args['answer']
  1121. if 'keywords' in args and args['keywords']:
  1122. segment.keywords = args['keywords']
  1123. if 'enabled' in args and args['enabled'] is not None:
  1124. segment.enabled = args['enabled']
  1125. db.session.add(segment)
  1126. db.session.commit()
  1127. # update segment index task
  1128. if args['keywords']:
  1129. keyword = Keyword(dataset)
  1130. keyword.delete_by_ids([segment.index_node_id])
  1131. document = RAGDocument(
  1132. page_content=segment.content,
  1133. metadata={
  1134. "doc_id": segment.index_node_id,
  1135. "doc_hash": segment.index_node_hash,
  1136. "document_id": segment.document_id,
  1137. "dataset_id": segment.dataset_id,
  1138. }
  1139. )
  1140. keyword.add_texts([document], keywords_list=[args['keywords']])
  1141. else:
  1142. segment_hash = helper.generate_text_hash(content)
  1143. tokens = 0
  1144. if dataset.indexing_technique == 'high_quality':
  1145. model_manager = ModelManager()
  1146. embedding_model = model_manager.get_model_instance(
  1147. tenant_id=current_user.current_tenant_id,
  1148. provider=dataset.embedding_model_provider,
  1149. model_type=ModelType.TEXT_EMBEDDING,
  1150. model=dataset.embedding_model
  1151. )
  1152. # calc embedding use tokens
  1153. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  1154. tokens = model_type_instance.get_num_tokens(
  1155. model=embedding_model.model,
  1156. credentials=embedding_model.credentials,
  1157. texts=[content]
  1158. )
  1159. segment.content = content
  1160. segment.index_node_hash = segment_hash
  1161. segment.word_count = len(content)
  1162. segment.tokens = tokens
  1163. segment.status = 'completed'
  1164. segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1165. segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1166. segment.updated_by = current_user.id
  1167. segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1168. if document.doc_form == 'qa_model':
  1169. segment.answer = args['answer']
  1170. db.session.add(segment)
  1171. db.session.commit()
  1172. # update segment vector index
  1173. VectorService.update_segment_vector(args['keywords'], segment, dataset)
  1174. except Exception as e:
  1175. logging.exception("update segment index failed")
  1176. segment.enabled = False
  1177. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1178. segment.status = 'error'
  1179. segment.error = str(e)
  1180. db.session.commit()
  1181. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1182. return segment
  1183. @classmethod
  1184. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1185. indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
  1186. cache_result = redis_client.get(indexing_cache_key)
  1187. if cache_result is not None:
  1188. raise ValueError("Segment is deleting.")
  1189. # enabled segment need to delete index
  1190. if segment.enabled:
  1191. # send delete segment index task
  1192. redis_client.setex(indexing_cache_key, 600, 1)
  1193. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  1194. db.session.delete(segment)
  1195. db.session.commit()
  1196. class DatasetCollectionBindingService:
  1197. @classmethod
  1198. def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
  1199. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1200. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1201. filter(DatasetCollectionBinding.provider_name == provider_name,
  1202. DatasetCollectionBinding.model_name == model_name,
  1203. DatasetCollectionBinding.type == collection_type). \
  1204. order_by(DatasetCollectionBinding.created_at). \
  1205. first()
  1206. if not dataset_collection_binding:
  1207. dataset_collection_binding = DatasetCollectionBinding(
  1208. provider_name=provider_name,
  1209. model_name=model_name,
  1210. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  1211. type=collection_type
  1212. )
  1213. db.session.add(dataset_collection_binding)
  1214. db.session.commit()
  1215. return dataset_collection_binding
  1216. @classmethod
  1217. def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
  1218. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1219. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1220. filter(DatasetCollectionBinding.id == collection_binding_id,
  1221. DatasetCollectionBinding.type == collection_type). \
  1222. order_by(DatasetCollectionBinding.created_at). \
  1223. first()
  1224. return dataset_collection_binding