| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398 | 
							- import concurrent.futures
 
- from concurrent.futures import ThreadPoolExecutor
 
- from typing import Optional
 
- from flask import Flask, current_app
 
- from sqlalchemy.orm import load_only
 
- from configs import dify_config
 
- from core.rag.data_post_processor.data_post_processor import DataPostProcessor
 
- from core.rag.datasource.keyword.keyword_factory import Keyword
 
- from core.rag.datasource.vdb.vector_factory import Vector
 
- from core.rag.embedding.retrieval import RetrievalSegments
 
- from core.rag.index_processor.constant.index_type import IndexType
 
- from core.rag.models.document import Document
 
- from core.rag.rerank.rerank_type import RerankMode
 
- from core.rag.retrieval.retrieval_methods import RetrievalMethod
 
- from extensions.ext_database import db
 
- from models.dataset import ChildChunk, Dataset, DocumentSegment
 
- from models.dataset import Document as DatasetDocument
 
- from services.external_knowledge_service import ExternalDatasetService
 
- default_retrieval_model = {
 
-     "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
 
-     "reranking_enable": False,
 
-     "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
 
-     "top_k": 2,
 
-     "score_threshold_enabled": False,
 
- }
 
- class RetrievalService:
 
-     # Cache precompiled regular expressions to avoid repeated compilation
 
-     @classmethod
 
-     def retrieve(
 
-         cls,
 
-         retrieval_method: str,
 
-         dataset_id: str,
 
-         query: str,
 
-         top_k: int,
 
-         score_threshold: Optional[float] = 0.0,
 
-         reranking_model: Optional[dict] = None,
 
-         reranking_mode: str = "reranking_model",
 
-         weights: Optional[dict] = None,
 
-         document_ids_filter: Optional[list[str]] = None,
 
-     ):
 
-         if not query:
 
-             return []
 
-         dataset = cls._get_dataset(dataset_id)
 
-         if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
 
-             return []
 
-         all_documents: list[Document] = []
 
-         exceptions: list[str] = []
 
-         # Optimize multithreading with thread pools
 
-         with ThreadPoolExecutor(max_workers=dify_config.RETRIEVAL_SERVICE_EXECUTORS) as executor:  # type: ignore
 
-             futures = []
 
-             if retrieval_method == "keyword_search":
 
-                 futures.append(
 
-                     executor.submit(
 
-                         cls.keyword_search,
 
-                         flask_app=current_app._get_current_object(),  # type: ignore
 
-                         dataset_id=dataset_id,
 
-                         query=query,
 
-                         top_k=top_k,
 
-                         all_documents=all_documents,
 
-                         exceptions=exceptions,
 
-                         document_ids_filter=document_ids_filter,
 
-                     )
 
-                 )
 
-             if RetrievalMethod.is_support_semantic_search(retrieval_method):
 
-                 futures.append(
 
-                     executor.submit(
 
-                         cls.embedding_search,
 
-                         flask_app=current_app._get_current_object(),  # type: ignore
 
-                         dataset_id=dataset_id,
 
-                         query=query,
 
-                         top_k=top_k,
 
-                         score_threshold=score_threshold,
 
-                         reranking_model=reranking_model,
 
-                         all_documents=all_documents,
 
-                         retrieval_method=retrieval_method,
 
-                         exceptions=exceptions,
 
-                         document_ids_filter=document_ids_filter,
 
-                     )
 
-                 )
 
-             if RetrievalMethod.is_support_fulltext_search(retrieval_method):
 
-                 futures.append(
 
-                     executor.submit(
 
-                         cls.full_text_index_search,
 
-                         flask_app=current_app._get_current_object(),  # type: ignore
 
-                         dataset_id=dataset_id,
 
-                         query=query,
 
-                         top_k=top_k,
 
-                         score_threshold=score_threshold,
 
-                         reranking_model=reranking_model,
 
-                         all_documents=all_documents,
 
-                         retrieval_method=retrieval_method,
 
-                         exceptions=exceptions,
 
-                         document_ids_filter=document_ids_filter,
 
-                     )
 
-                 )
 
-             concurrent.futures.wait(futures, timeout=30, return_when=concurrent.futures.ALL_COMPLETED)
 
-         if exceptions:
 
-             raise ValueError(";\n".join(exceptions))
 
-         if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
 
-             data_post_processor = DataPostProcessor(
 
-                 str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
 
-             )
 
-             all_documents = data_post_processor.invoke(
 
-                 query=query,
 
-                 documents=all_documents,
 
-                 score_threshold=score_threshold,
 
-                 top_n=top_k,
 
-             )
 
-         return all_documents
 
-     @classmethod
 
-     def external_retrieve(cls, dataset_id: str, query: str, external_retrieval_model: Optional[dict] = None):
 
-         dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 
-         if not dataset:
 
-             return []
 
-         all_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
 
-             dataset.tenant_id, dataset_id, query, external_retrieval_model or {}
 
-         )
 
-         return all_documents
 
-     @classmethod
 
-     def _get_dataset(cls, dataset_id: str) -> Optional[Dataset]:
 
-         return db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 
-     @classmethod
 
-     def keyword_search(
 
-         cls,
 
-         flask_app: Flask,
 
-         dataset_id: str,
 
-         query: str,
 
-         top_k: int,
 
-         all_documents: list,
 
-         exceptions: list,
 
-         document_ids_filter: Optional[list[str]] = None,
 
-     ):
 
-         with flask_app.app_context():
 
-             try:
 
-                 dataset = cls._get_dataset(dataset_id)
 
-                 if not dataset:
 
-                     raise ValueError("dataset not found")
 
-                 keyword = Keyword(dataset=dataset)
 
-                 documents = keyword.search(
 
-                     cls.escape_query_for_search(query), top_k=top_k, document_ids_filter=document_ids_filter
 
-                 )
 
-                 all_documents.extend(documents)
 
-             except Exception as e:
 
-                 exceptions.append(str(e))
 
-     @classmethod
 
-     def embedding_search(
 
-         cls,
 
-         flask_app: Flask,
 
-         dataset_id: str,
 
-         query: str,
 
-         top_k: int,
 
-         score_threshold: Optional[float],
 
-         reranking_model: Optional[dict],
 
-         all_documents: list,
 
-         retrieval_method: str,
 
-         exceptions: list,
 
-         document_ids_filter: Optional[list[str]] = None,
 
-     ):
 
-         with flask_app.app_context():
 
-             try:
 
-                 dataset = cls._get_dataset(dataset_id)
 
-                 if not dataset:
 
-                     raise ValueError("dataset not found")
 
-                 vector = Vector(dataset=dataset)
 
-                 documents = vector.search_by_vector(
 
-                     query,
 
-                     search_type="similarity_score_threshold",
 
-                     top_k=top_k,
 
-                     score_threshold=score_threshold,
 
-                     filter={"group_id": [dataset.id]},
 
-                     document_ids_filter=document_ids_filter,
 
-                 )
 
-                 if documents:
 
-                     if (
 
-                         reranking_model
 
-                         and reranking_model.get("reranking_model_name")
 
-                         and reranking_model.get("reranking_provider_name")
 
-                         and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
 
-                     ):
 
-                         data_post_processor = DataPostProcessor(
 
-                             str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL.value), reranking_model, None, False
 
-                         )
 
-                         all_documents.extend(
 
-                             data_post_processor.invoke(
 
-                                 query=query,
 
-                                 documents=documents,
 
-                                 score_threshold=score_threshold,
 
-                                 top_n=len(documents),
 
-                             )
 
-                         )
 
-                     else:
 
-                         all_documents.extend(documents)
 
-             except Exception as e:
 
-                 exceptions.append(str(e))
 
-     @classmethod
 
-     def full_text_index_search(
 
-         cls,
 
-         flask_app: Flask,
 
-         dataset_id: str,
 
-         query: str,
 
-         top_k: int,
 
-         score_threshold: Optional[float],
 
-         reranking_model: Optional[dict],
 
-         all_documents: list,
 
-         retrieval_method: str,
 
-         exceptions: list,
 
-         document_ids_filter: Optional[list[str]] = None,
 
-     ):
 
-         with flask_app.app_context():
 
-             try:
 
-                 dataset = cls._get_dataset(dataset_id)
 
-                 if not dataset:
 
-                     raise ValueError("dataset not found")
 
-                 vector_processor = Vector(dataset=dataset)
 
-                 documents = vector_processor.search_by_full_text(
 
-                     cls.escape_query_for_search(query), top_k=top_k, document_ids_filter=document_ids_filter
 
-                 )
 
-                 if documents:
 
-                     if (
 
-                         reranking_model
 
-                         and reranking_model.get("reranking_model_name")
 
-                         and reranking_model.get("reranking_provider_name")
 
-                         and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
 
-                     ):
 
-                         data_post_processor = DataPostProcessor(
 
-                             str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL.value), reranking_model, None, False
 
-                         )
 
-                         all_documents.extend(
 
-                             data_post_processor.invoke(
 
-                                 query=query,
 
-                                 documents=documents,
 
-                                 score_threshold=score_threshold,
 
-                                 top_n=len(documents),
 
-                             )
 
-                         )
 
-                     else:
 
-                         all_documents.extend(documents)
 
-             except Exception as e:
 
-                 exceptions.append(str(e))
 
-     @staticmethod
 
-     def escape_query_for_search(query: str) -> str:
 
-         return query.replace('"', '\\"')
 
-     @classmethod
 
-     def format_retrieval_documents(cls, documents: list[Document]) -> list[RetrievalSegments]:
 
-         """Format retrieval documents with optimized batch processing"""
 
-         if not documents:
 
-             return []
 
-         try:
 
-             # Collect document IDs
 
-             document_ids = {doc.metadata.get("document_id") for doc in documents if "document_id" in doc.metadata}
 
-             if not document_ids:
 
-                 return []
 
-             # Batch query dataset documents
 
-             dataset_documents = {
 
-                 doc.id: doc
 
-                 for doc in db.session.query(DatasetDocument)
 
-                 .filter(DatasetDocument.id.in_(document_ids))
 
-                 .options(load_only(DatasetDocument.id, DatasetDocument.doc_form, DatasetDocument.dataset_id))
 
-                 .all()
 
-             }
 
-             records = []
 
-             include_segment_ids = set()
 
-             segment_child_map = {}
 
-             # Process documents
 
-             for document in documents:
 
-                 document_id = document.metadata.get("document_id")
 
-                 if document_id not in dataset_documents:
 
-                     continue
 
-                 dataset_document = dataset_documents[document_id]
 
-                 if not dataset_document:
 
-                     continue
 
-                 if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
 
-                     # Handle parent-child documents
 
-                     child_index_node_id = document.metadata.get("doc_id")
 
-                     child_chunk = (
 
-                         db.session.query(ChildChunk).filter(ChildChunk.index_node_id == child_index_node_id).first()
 
-                     )
 
-                     if not child_chunk:
 
-                         continue
 
-                     segment = (
 
-                         db.session.query(DocumentSegment)
 
-                         .filter(
 
-                             DocumentSegment.dataset_id == dataset_document.dataset_id,
 
-                             DocumentSegment.enabled == True,
 
-                             DocumentSegment.status == "completed",
 
-                             DocumentSegment.id == child_chunk.segment_id,
 
-                         )
 
-                         .options(
 
-                             load_only(
 
-                                 DocumentSegment.id,
 
-                                 DocumentSegment.content,
 
-                                 DocumentSegment.answer,
 
-                             )
 
-                         )
 
-                         .first()
 
-                     )
 
-                     if not segment:
 
-                         continue
 
-                     if segment.id not in include_segment_ids:
 
-                         include_segment_ids.add(segment.id)
 
-                         child_chunk_detail = {
 
-                             "id": child_chunk.id,
 
-                             "content": child_chunk.content,
 
-                             "position": child_chunk.position,
 
-                             "score": document.metadata.get("score", 0.0),
 
-                         }
 
-                         map_detail = {
 
-                             "max_score": document.metadata.get("score", 0.0),
 
-                             "child_chunks": [child_chunk_detail],
 
-                         }
 
-                         segment_child_map[segment.id] = map_detail
 
-                         record = {
 
-                             "segment": segment,
 
-                         }
 
-                         records.append(record)
 
-                     else:
 
-                         child_chunk_detail = {
 
-                             "id": child_chunk.id,
 
-                             "content": child_chunk.content,
 
-                             "position": child_chunk.position,
 
-                             "score": document.metadata.get("score", 0.0),
 
-                         }
 
-                         segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)
 
-                         segment_child_map[segment.id]["max_score"] = max(
 
-                             segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
 
-                         )
 
-                 else:
 
-                     # Handle normal documents
 
-                     index_node_id = document.metadata.get("doc_id")
 
-                     if not index_node_id:
 
-                         continue
 
-                     segment = (
 
-                         db.session.query(DocumentSegment)
 
-                         .filter(
 
-                             DocumentSegment.dataset_id == dataset_document.dataset_id,
 
-                             DocumentSegment.enabled == True,
 
-                             DocumentSegment.status == "completed",
 
-                             DocumentSegment.index_node_id == index_node_id,
 
-                         )
 
-                         .first()
 
-                     )
 
-                     if not segment:
 
-                         continue
 
-                     include_segment_ids.add(segment.id)
 
-                     record = {
 
-                         "segment": segment,
 
-                         "score": document.metadata.get("score"),  # type: ignore
 
-                     }
 
-                     records.append(record)
 
-             # Add child chunks information to records
 
-             for record in records:
 
-                 if record["segment"].id in segment_child_map:
 
-                     record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks")  # type: ignore
 
-                     record["score"] = segment_child_map[record["segment"].id]["max_score"]
 
-             return [RetrievalSegments(**record) for record in records]
 
-         except Exception as e:
 
-             db.session.rollback()
 
-             raise e
 
 
  |