| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165 | import jsonimport mathimport reimport threadingfrom collections import Counter, defaultdictfrom collections.abc import Generator, Mappingfrom typing import Any, Optional, Union, castfrom flask import Flask, current_appfrom sqlalchemy import Integer, and_, or_, textfrom sqlalchemy import cast as sqlalchemy_castfrom core.app.app_config.entities import (    DatasetEntity,    DatasetRetrieveConfigEntity,    MetadataFilteringCondition,    ModelConfig,)from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntityfrom core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandlerfrom core.entities.agent_entities import PlanningStrategyfrom core.entities.model_entities import ModelStatusfrom core.memory.token_buffer_memory import TokenBufferMemoryfrom core.model_manager import ModelInstance, ModelManagerfrom core.model_runtime.entities.llm_entities import LLMResult, LLMUsagefrom core.model_runtime.entities.message_entities import PromptMessage, PromptMessageRole, PromptMessageToolfrom core.model_runtime.entities.model_entities import ModelFeature, ModelTypefrom core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModelfrom core.ops.entities.trace_entity import TraceTaskNamefrom core.ops.ops_trace_manager import TraceQueueManager, TraceTaskfrom core.ops.utils import measure_timefrom core.prompt.advanced_prompt_transform import AdvancedPromptTransformfrom core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplatefrom core.prompt.simple_prompt_transform import ModelModefrom core.rag.data_post_processor.data_post_processor import DataPostProcessorfrom core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandlerfrom core.rag.datasource.retrieval_service import RetrievalServicefrom core.rag.entities.context_entities import DocumentContextfrom core.rag.entities.metadata_entities import Condition, MetadataConditionfrom core.rag.index_processor.constant.index_type import IndexTypefrom core.rag.models.document import Documentfrom core.rag.rerank.rerank_type import RerankModefrom core.rag.retrieval.retrieval_methods import RetrievalMethodfrom core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouterfrom core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouterfrom core.rag.retrieval.template_prompts import (    METADATA_FILTER_ASSISTANT_PROMPT_1,    METADATA_FILTER_ASSISTANT_PROMPT_2,    METADATA_FILTER_COMPLETION_PROMPT,    METADATA_FILTER_SYSTEM_PROMPT,    METADATA_FILTER_USER_PROMPT_1,    METADATA_FILTER_USER_PROMPT_2,    METADATA_FILTER_USER_PROMPT_3,)from core.tools.utils.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseToolfrom extensions.ext_database import dbfrom libs.json_in_md_parser import parse_and_check_json_markdownfrom models.dataset import ChildChunk, Dataset, DatasetMetadata, DatasetQuery, DocumentSegmentfrom models.dataset import Document as DatasetDocumentfrom services.external_knowledge_service import ExternalDatasetServicedefault_retrieval_model: dict[str, Any] = {    "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,    "reranking_enable": False,    "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},    "top_k": 2,    "score_threshold_enabled": False,}class DatasetRetrieval:    def __init__(self, application_generate_entity=None):        self.application_generate_entity = application_generate_entity    def retrieve(        self,        app_id: str,        user_id: str,        tenant_id: str,        model_config: ModelConfigWithCredentialsEntity,        config: DatasetEntity,        query: str,        invoke_from: InvokeFrom,        show_retrieve_source: bool,        hit_callback: DatasetIndexToolCallbackHandler,        message_id: str,        memory: Optional[TokenBufferMemory] = None,        inputs: Optional[Mapping[str, Any]] = None,    ) -> Optional[str]:        """        Retrieve dataset.        :param app_id: app_id        :param user_id: user_id        :param tenant_id: tenant id        :param model_config: model config        :param config: dataset config        :param query: query        :param invoke_from: invoke from        :param show_retrieve_source: show retrieve source        :param hit_callback: hit callback        :param message_id: message id        :param memory: memory        :return:        """        dataset_ids = config.dataset_ids        if len(dataset_ids) == 0:            return None        retrieve_config = config.retrieve_config        # check model is support tool calling        model_type_instance = model_config.provider_model_bundle.model_type_instance        model_type_instance = cast(LargeLanguageModel, model_type_instance)        model_manager = ModelManager()        model_instance = model_manager.get_model_instance(            tenant_id=tenant_id, model_type=ModelType.LLM, provider=model_config.provider, model=model_config.model        )        # get model schema        model_schema = model_type_instance.get_model_schema(            model=model_config.model, credentials=model_config.credentials        )        if not model_schema:            return None        planning_strategy = PlanningStrategy.REACT_ROUTER        features = model_schema.features        if features:            if ModelFeature.TOOL_CALL in features or ModelFeature.MULTI_TOOL_CALL in features:                planning_strategy = PlanningStrategy.ROUTER        available_datasets = []        for dataset_id in dataset_ids:            # get dataset from dataset id            dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()            # pass if dataset is not available            if not dataset:                continue            # pass if dataset is not available            if dataset and dataset.available_document_count == 0 and dataset.provider != "external":                continue            available_datasets.append(dataset)        if inputs:            inputs = {key: str(value) for key, value in inputs.items()}        else:            inputs = {}        available_datasets_ids = [dataset.id for dataset in available_datasets]        metadata_filter_document_ids, metadata_condition = self._get_metadata_filter_condition(            available_datasets_ids,            query,            tenant_id,            user_id,            retrieve_config.metadata_filtering_mode,  # type: ignore            retrieve_config.metadata_model_config,  # type: ignore            retrieve_config.metadata_filtering_conditions,            inputs,        )        all_documents = []        user_from = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"        if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:            all_documents = self.single_retrieve(                app_id,                tenant_id,                user_id,                user_from,                available_datasets,                query,                model_instance,                model_config,                planning_strategy,                message_id,                metadata_filter_document_ids,                metadata_condition,            )        elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:            all_documents = self.multiple_retrieve(                app_id,                tenant_id,                user_id,                user_from,                available_datasets,                query,                retrieve_config.top_k or 0,                retrieve_config.score_threshold or 0,                retrieve_config.rerank_mode or "reranking_model",                retrieve_config.reranking_model,                retrieve_config.weights,                retrieve_config.reranking_enabled or True,                message_id,                metadata_filter_document_ids,                metadata_condition,            )        dify_documents = [item for item in all_documents if item.provider == "dify"]        external_documents = [item for item in all_documents if item.provider == "external"]        document_context_list = []        retrieval_resource_list = []        # deal with external documents        for item in external_documents:            document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))            source = {                "dataset_id": item.metadata.get("dataset_id"),                "dataset_name": item.metadata.get("dataset_name"),                "document_name": item.metadata.get("title"),                "data_source_type": "external",                "retriever_from": invoke_from.to_source(),                "score": item.metadata.get("score"),                "content": item.page_content,            }            retrieval_resource_list.append(source)        # deal with dify documents        if dify_documents:            records = RetrievalService.format_retrieval_documents(dify_documents)            if records:                for record in records:                    segment = record.segment                    if segment.answer:                        document_context_list.append(                            DocumentContext(                                content=f"question:{segment.get_sign_content()} answer:{segment.answer}",                                score=record.score,                            )                        )                    else:                        document_context_list.append(                            DocumentContext(                                content=segment.get_sign_content(),                                score=record.score,                            )                        )                if show_retrieve_source:                    for record in records:                        segment = record.segment                        dataset = Dataset.query.filter_by(id=segment.dataset_id).first()                        document = DatasetDocument.query.filter(                            DatasetDocument.id == segment.document_id,                            DatasetDocument.enabled == True,                            DatasetDocument.archived == False,                        ).first()                        if dataset and document:                            source = {                                "dataset_id": dataset.id,                                "dataset_name": dataset.name,                                "document_id": document.id,                                "document_name": document.name,                                "data_source_type": document.data_source_type,                                "segment_id": segment.id,                                "retriever_from": invoke_from.to_source(),                                "score": record.score or 0.0,                                "doc_metadata": document.doc_metadata,                            }                            if invoke_from.to_source() == "dev":                                source["hit_count"] = segment.hit_count                                source["word_count"] = segment.word_count                                source["segment_position"] = segment.position                                source["index_node_hash"] = segment.index_node_hash                            if segment.answer:                                source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"                            else:                                source["content"] = segment.content                            retrieval_resource_list.append(source)        if hit_callback and retrieval_resource_list:            retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.get("score") or 0.0, reverse=True)            for position, item in enumerate(retrieval_resource_list, start=1):                item["position"] = position            hit_callback.return_retriever_resource_info(retrieval_resource_list)        if document_context_list:            document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)            return str("\n".join([document_context.content for document_context in document_context_list]))        return ""    def single_retrieve(        self,        app_id: str,        tenant_id: str,        user_id: str,        user_from: str,        available_datasets: list,        query: str,        model_instance: ModelInstance,        model_config: ModelConfigWithCredentialsEntity,        planning_strategy: PlanningStrategy,        message_id: Optional[str] = None,        metadata_filter_document_ids: Optional[dict[str, list[str]]] = None,        metadata_condition: Optional[MetadataCondition] = None,    ):        tools = []        for dataset in available_datasets:            description = dataset.description            if not description:                description = "useful for when you want to answer queries about the " + dataset.name            description = description.replace("\n", "").replace("\r", "")            message_tool = PromptMessageTool(                name=dataset.id,                description=description,                parameters={                    "type": "object",                    "properties": {},                    "required": [],                },            )            tools.append(message_tool)        dataset_id = None        if planning_strategy == PlanningStrategy.REACT_ROUTER:            react_multi_dataset_router = ReactMultiDatasetRouter()            dataset_id = react_multi_dataset_router.invoke(                query, tools, model_config, model_instance, user_id, tenant_id            )        elif planning_strategy == PlanningStrategy.ROUTER:            function_call_router = FunctionCallMultiDatasetRouter()            dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)        if dataset_id:            # get retrieval model config            dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()            if dataset:                results = []                if dataset.provider == "external":                    external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(                        tenant_id=dataset.tenant_id,                        dataset_id=dataset_id,                        query=query,                        external_retrieval_parameters=dataset.retrieval_model,                        metadata_condition=metadata_condition,                    )                    for external_document in external_documents:                        document = Document(                            page_content=external_document.get("content"),                            metadata=external_document.get("metadata"),                            provider="external",                        )                        if document.metadata is not None:                            document.metadata["score"] = external_document.get("score")                            document.metadata["title"] = external_document.get("title")                            document.metadata["dataset_id"] = dataset_id                            document.metadata["dataset_name"] = dataset.name                        results.append(document)                else:                    if metadata_condition and not metadata_filter_document_ids:                        return []                    document_ids_filter = None                    if metadata_filter_document_ids:                        document_ids = metadata_filter_document_ids.get(dataset.id, [])                        if document_ids:                            document_ids_filter = document_ids                        else:                            return []                    retrieval_model_config = dataset.retrieval_model or default_retrieval_model                    # get top k                    top_k = retrieval_model_config["top_k"]                    # get retrieval method                    if dataset.indexing_technique == "economy":                        retrieval_method = "keyword_search"                    else:                        retrieval_method = retrieval_model_config["search_method"]                    # get reranking model                    reranking_model = (                        retrieval_model_config["reranking_model"]                        if retrieval_model_config["reranking_enable"]                        else None                    )                    # get score threshold                    score_threshold = 0.0                    score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")                    if score_threshold_enabled:                        score_threshold = retrieval_model_config.get("score_threshold", 0.0)                    with measure_time() as timer:                        results = RetrievalService.retrieve(                            retrieval_method=retrieval_method,                            dataset_id=dataset.id,                            query=query,                            top_k=top_k,                            score_threshold=score_threshold,                            reranking_model=reranking_model,                            reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),                            weights=retrieval_model_config.get("weights", None),                            document_ids_filter=document_ids_filter,                        )                self._on_query(query, [dataset_id], app_id, user_from, user_id)                if results:                    self._on_retrieval_end(results, message_id, timer)                return results        return []    def multiple_retrieve(        self,        app_id: str,        tenant_id: str,        user_id: str,        user_from: str,        available_datasets: list,        query: str,        top_k: int,        score_threshold: float,        reranking_mode: str,        reranking_model: Optional[dict] = None,        weights: Optional[dict[str, Any]] = None,        reranking_enable: bool = True,        message_id: Optional[str] = None,        metadata_filter_document_ids: Optional[dict[str, list[str]]] = None,        metadata_condition: Optional[MetadataCondition] = None,    ):        if not available_datasets:            return []        threads = []        all_documents: list[Document] = []        dataset_ids = [dataset.id for dataset in available_datasets]        index_type_check = all(            item.indexing_technique == available_datasets[0].indexing_technique for item in available_datasets        )        if not index_type_check and (not reranking_enable or reranking_mode != RerankMode.RERANKING_MODEL):            raise ValueError(                "The configured knowledge base list have different indexing technique, please set reranking model."            )        index_type = available_datasets[0].indexing_technique        if index_type == "high_quality":            embedding_model_check = all(                item.embedding_model == available_datasets[0].embedding_model for item in available_datasets            )            embedding_model_provider_check = all(                item.embedding_model_provider == available_datasets[0].embedding_model_provider                for item in available_datasets            )            if (                reranking_enable                and reranking_mode == "weighted_score"                and (not embedding_model_check or not embedding_model_provider_check)            ):                raise ValueError(                    "The configured knowledge base list have different embedding model, please set reranking model."                )            if reranking_enable and reranking_mode == RerankMode.WEIGHTED_SCORE:                if weights is not None:                    weights["vector_setting"]["embedding_provider_name"] = available_datasets[                        0                    ].embedding_model_provider                    weights["vector_setting"]["embedding_model_name"] = available_datasets[0].embedding_model        for dataset in available_datasets:            index_type = dataset.indexing_technique            document_ids_filter = None            if dataset.provider != "external":                if metadata_condition and not metadata_filter_document_ids:                    continue                if metadata_filter_document_ids:                    document_ids = metadata_filter_document_ids.get(dataset.id, [])                    if document_ids:                        document_ids_filter = document_ids                    else:                        continue            retrieval_thread = threading.Thread(                target=self._retriever,                kwargs={                    "flask_app": current_app._get_current_object(),  # type: ignore                    "dataset_id": dataset.id,                    "query": query,                    "top_k": top_k,                    "all_documents": all_documents,                    "document_ids_filter": document_ids_filter,                    "metadata_condition": metadata_condition,                },            )            threads.append(retrieval_thread)            retrieval_thread.start()        for thread in threads:            thread.join()        with measure_time() as timer:            if reranking_enable:                # do rerank for searched documents                data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)                all_documents = data_post_processor.invoke(                    query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k                )            else:                if index_type == "economy":                    all_documents = self.calculate_keyword_score(query, all_documents, top_k)                elif index_type == "high_quality":                    all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)        self._on_query(query, dataset_ids, app_id, user_from, user_id)        if all_documents:            self._on_retrieval_end(all_documents, message_id, timer)        return all_documents    def _on_retrieval_end(        self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None    ) -> None:        """Handle retrieval end."""        dify_documents = [document for document in documents if document.provider == "dify"]        for document in dify_documents:            if document.metadata is not None:                dataset_document = DatasetDocument.query.filter(                    DatasetDocument.id == document.metadata["document_id"]                ).first()                if dataset_document:                    if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:                        child_chunk = ChildChunk.query.filter(                            ChildChunk.index_node_id == document.metadata["doc_id"],                            ChildChunk.dataset_id == dataset_document.dataset_id,                            ChildChunk.document_id == dataset_document.id,                        ).first()                        if child_chunk:                            segment = DocumentSegment.query.filter(DocumentSegment.id == child_chunk.segment_id).update(                                {DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False                            )                            db.session.commit()                    else:                        query = db.session.query(DocumentSegment).filter(                            DocumentSegment.index_node_id == document.metadata["doc_id"]                        )                        # if 'dataset_id' in document.metadata:                        if "dataset_id" in document.metadata:                            query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])                        # add hit count to document segment                        query.update(                            {DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False                        )                    db.session.commit()        # get tracing instance        trace_manager: TraceQueueManager | None = (            self.application_generate_entity.trace_manager if self.application_generate_entity else None        )        if trace_manager:            trace_manager.add_trace_task(                TraceTask(                    TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer                )            )    def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:        """        Handle query.        """        if not query:            return        dataset_queries = []        for dataset_id in dataset_ids:            dataset_query = DatasetQuery(                dataset_id=dataset_id,                content=query,                source="app",                source_app_id=app_id,                created_by_role=user_from,                created_by=user_id,            )            dataset_queries.append(dataset_query)        if dataset_queries:            db.session.add_all(dataset_queries)        db.session.commit()    def _retriever(        self,        flask_app: Flask,        dataset_id: str,        query: str,        top_k: int,        all_documents: list,        document_ids_filter: Optional[list[str]] = None,        metadata_condition: Optional[MetadataCondition] = None,    ):        with flask_app.app_context():            dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()            if not dataset:                return []            if dataset.provider == "external":                external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(                    tenant_id=dataset.tenant_id,                    dataset_id=dataset_id,                    query=query,                    external_retrieval_parameters=dataset.retrieval_model,                    metadata_condition=metadata_condition,                )                for external_document in external_documents:                    document = Document(                        page_content=external_document.get("content"),                        metadata=external_document.get("metadata"),                        provider="external",                    )                    if document.metadata is not None:                        document.metadata["score"] = external_document.get("score")                        document.metadata["title"] = external_document.get("title")                        document.metadata["dataset_id"] = dataset_id                        document.metadata["dataset_name"] = dataset.name                    all_documents.append(document)            else:                # get retrieval model , if the model is not setting , using default                retrieval_model = dataset.retrieval_model or default_retrieval_model                if dataset.indexing_technique == "economy":                    # use keyword table query                    documents = RetrievalService.retrieve(                        retrieval_method="keyword_search",                        dataset_id=dataset.id,                        query=query,                        top_k=top_k,                        document_ids_filter=document_ids_filter,                    )                    if documents:                        all_documents.extend(documents)                else:                    if top_k > 0:                        # retrieval source                        documents = RetrievalService.retrieve(                            retrieval_method=retrieval_model["search_method"],                            dataset_id=dataset.id,                            query=query,                            top_k=retrieval_model.get("top_k") or 2,                            score_threshold=retrieval_model.get("score_threshold", 0.0)                            if retrieval_model["score_threshold_enabled"]                            else 0.0,                            reranking_model=retrieval_model.get("reranking_model", None)                            if retrieval_model["reranking_enable"]                            else None,                            reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",                            weights=retrieval_model.get("weights", None),                            document_ids_filter=document_ids_filter,                        )                        all_documents.extend(documents)    def to_dataset_retriever_tool(        self,        tenant_id: str,        dataset_ids: list[str],        retrieve_config: DatasetRetrieveConfigEntity,        return_resource: bool,        invoke_from: InvokeFrom,        hit_callback: DatasetIndexToolCallbackHandler,    ) -> Optional[list[DatasetRetrieverBaseTool]]:        """        A dataset tool is a tool that can be used to retrieve information from a dataset        :param tenant_id: tenant id        :param dataset_ids: dataset ids        :param retrieve_config: retrieve config        :param return_resource: return resource        :param invoke_from: invoke from        :param hit_callback: hit callback        """        tools = []        available_datasets = []        for dataset_id in dataset_ids:            # get dataset from dataset id            dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()            # pass if dataset is not available            if not dataset:                continue            # pass if dataset is not available            if dataset and dataset.provider != "external" and dataset.available_document_count == 0:                continue            available_datasets.append(dataset)        if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:            # get retrieval model config            default_retrieval_model = {                "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,                "reranking_enable": False,                "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},                "top_k": 2,                "score_threshold_enabled": False,            }            for dataset in available_datasets:                retrieval_model_config = dataset.retrieval_model or default_retrieval_model                # get top k                top_k = retrieval_model_config["top_k"]                # get score threshold                score_threshold = None                score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")                if score_threshold_enabled:                    score_threshold = retrieval_model_config.get("score_threshold")                from core.tools.utils.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool                tool = DatasetRetrieverTool.from_dataset(                    dataset=dataset,                    top_k=top_k,                    score_threshold=score_threshold,                    hit_callbacks=[hit_callback],                    return_resource=return_resource,                    retriever_from=invoke_from.to_source(),                )                tools.append(tool)        elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:            from core.tools.utils.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool            if retrieve_config.reranking_model is None:                raise ValueError("Reranking model is required for multiple retrieval")            tool = DatasetMultiRetrieverTool.from_dataset(                dataset_ids=[dataset.id for dataset in available_datasets],                tenant_id=tenant_id,                top_k=retrieve_config.top_k or 2,                score_threshold=retrieve_config.score_threshold,                hit_callbacks=[hit_callback],                return_resource=return_resource,                retriever_from=invoke_from.to_source(),                reranking_provider_name=retrieve_config.reranking_model.get("reranking_provider_name"),                reranking_model_name=retrieve_config.reranking_model.get("reranking_model_name"),            )            tools.append(tool)        return tools    def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:        """        Calculate keywords scores        :param query: search query        :param documents: documents for reranking        :return:        """        keyword_table_handler = JiebaKeywordTableHandler()        query_keywords = keyword_table_handler.extract_keywords(query, None)        documents_keywords = []        for document in documents:            if document.metadata is not None:                # get the document keywords                document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)                document.metadata["keywords"] = document_keywords                documents_keywords.append(document_keywords)        # Counter query keywords(TF)        query_keyword_counts = Counter(query_keywords)        # total documents        total_documents = len(documents)        # calculate all documents' keywords IDF        all_keywords = set()        for document_keywords in documents_keywords:            all_keywords.update(document_keywords)        keyword_idf = {}        for keyword in all_keywords:            # calculate include query keywords' documents            doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)            # IDF            keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1        query_tfidf = {}        for keyword, count in query_keyword_counts.items():            tf = count            idf = keyword_idf.get(keyword, 0)            query_tfidf[keyword] = tf * idf        # calculate all documents' TF-IDF        documents_tfidf = []        for document_keywords in documents_keywords:            document_keyword_counts = Counter(document_keywords)            document_tfidf = {}            for keyword, count in document_keyword_counts.items():                tf = count                idf = keyword_idf.get(keyword, 0)                document_tfidf[keyword] = tf * idf            documents_tfidf.append(document_tfidf)        def cosine_similarity(vec1, vec2):            intersection = set(vec1.keys()) & set(vec2.keys())            numerator = sum(vec1[x] * vec2[x] for x in intersection)            sum1 = sum(vec1[x] ** 2 for x in vec1)            sum2 = sum(vec2[x] ** 2 for x in vec2)            denominator = math.sqrt(sum1) * math.sqrt(sum2)            if not denominator:                return 0.0            else:                return float(numerator) / denominator        similarities = []        for document_tfidf in documents_tfidf:            similarity = cosine_similarity(query_tfidf, document_tfidf)            similarities.append(similarity)        for document, score in zip(documents, similarities):            # format document            if document.metadata is not None:                document.metadata["score"] = score        documents = sorted(documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True)        return documents[:top_k] if top_k else documents    def calculate_vector_score(        self, all_documents: list[Document], top_k: int, score_threshold: float    ) -> list[Document]:        filter_documents = []        for document in all_documents:            if score_threshold is None or (document.metadata and document.metadata.get("score", 0) >= score_threshold):                filter_documents.append(document)        if not filter_documents:            return []        filter_documents = sorted(            filter_documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True        )        return filter_documents[:top_k] if top_k else filter_documents    def _get_metadata_filter_condition(        self,        dataset_ids: list,        query: str,        tenant_id: str,        user_id: str,        metadata_filtering_mode: str,        metadata_model_config: ModelConfig,        metadata_filtering_conditions: Optional[MetadataFilteringCondition],        inputs: dict,    ) -> tuple[Optional[dict[str, list[str]]], Optional[MetadataCondition]]:        document_query = db.session.query(DatasetDocument).filter(            DatasetDocument.dataset_id.in_(dataset_ids),            DatasetDocument.indexing_status == "completed",            DatasetDocument.enabled == True,            DatasetDocument.archived == False,        )        filters = []  # type: ignore        metadata_condition = None        if metadata_filtering_mode == "disabled":            return None, None        elif metadata_filtering_mode == "automatic":            automatic_metadata_filters = self._automatic_metadata_filter_func(                dataset_ids, query, tenant_id, user_id, metadata_model_config            )            if automatic_metadata_filters:                conditions = []                for filter in automatic_metadata_filters:                    self._process_metadata_filter_func(                        filter.get("condition"),  # type: ignore                        filter.get("metadata_name"),  # type: ignore                        filter.get("value"),                        filters,  # type: ignore                    )                    conditions.append(                        Condition(                            name=filter.get("metadata_name"),  # type: ignore                            comparison_operator=filter.get("condition"),  # type: ignore                            value=filter.get("value"),                        )                    )                metadata_condition = MetadataCondition(                    logical_operator=metadata_filtering_conditions.logical_operator,  # type: ignore                    conditions=conditions,                )        elif metadata_filtering_mode == "manual":            if metadata_filtering_conditions:                metadata_condition = MetadataCondition(**metadata_filtering_conditions.model_dump())                for condition in metadata_filtering_conditions.conditions:  # type: ignore                    metadata_name = condition.name                    expected_value = condition.value                    if expected_value is not None or condition.comparison_operator in ("empty", "not empty"):                        if isinstance(expected_value, str):                            expected_value = self._replace_metadata_filter_value(expected_value, inputs)                        filters = self._process_metadata_filter_func(                            condition.comparison_operator, metadata_name, expected_value, filters                        )        else:            raise ValueError("Invalid metadata filtering mode")        if filters:            if metadata_filtering_conditions.logical_operator == "or":  # type: ignore                document_query = document_query.filter(or_(*filters))            else:                document_query = document_query.filter(and_(*filters))        documents = document_query.all()        # group by dataset_id        metadata_filter_document_ids = defaultdict(list) if documents else None  # type: ignore        for document in documents:            metadata_filter_document_ids[document.dataset_id].append(document.id)  # type: ignore        return metadata_filter_document_ids, metadata_condition    def _replace_metadata_filter_value(self, text: str, inputs: dict) -> str:        def replacer(match):            key = match.group(1)            return str(inputs.get(key, f"{{{{{key}}}}}"))        pattern = re.compile(r"\{\{(\w+)\}\}")        output = pattern.sub(replacer, text)        if isinstance(output, str):            output = re.sub(r"[\r\n\t]+", " ", output).strip()        return output    def _automatic_metadata_filter_func(        self, dataset_ids: list, query: str, tenant_id: str, user_id: str, metadata_model_config: ModelConfig    ) -> Optional[list[dict[str, Any]]]:        # get all metadata field        metadata_fields = db.session.query(DatasetMetadata).filter(DatasetMetadata.dataset_id.in_(dataset_ids)).all()        all_metadata_fields = [metadata_field.name for metadata_field in metadata_fields]        # get metadata model config        if metadata_model_config is None:            raise ValueError("metadata_model_config is required")        # get metadata model instance        # fetch model config        model_instance, model_config = self._fetch_model_config(tenant_id, metadata_model_config)        # fetch prompt messages        prompt_messages, stop = self._get_prompt_template(            model_config=model_config,            mode=metadata_model_config.mode,            metadata_fields=all_metadata_fields,            query=query or "",        )        result_text = ""        try:            # handle invoke result            invoke_result = cast(                Generator[LLMResult, None, None],                model_instance.invoke_llm(                    prompt_messages=prompt_messages,                    model_parameters=model_config.parameters,                    stop=stop,                    stream=True,                    user=user_id,                ),            )            # handle invoke result            result_text, usage = self._handle_invoke_result(invoke_result=invoke_result)            result_text_json = parse_and_check_json_markdown(result_text, [])            automatic_metadata_filters = []            if "metadata_map" in result_text_json:                metadata_map = result_text_json["metadata_map"]                for item in metadata_map:                    if item.get("metadata_field_name") in all_metadata_fields:                        automatic_metadata_filters.append(                            {                                "metadata_name": item.get("metadata_field_name"),                                "value": item.get("metadata_field_value"),                                "condition": item.get("comparison_operator"),                            }                        )        except Exception as e:            return None        return automatic_metadata_filters    def _process_metadata_filter_func(self, condition: str, metadata_name: str, value: Optional[Any], filters: list):        match condition:            case "contains":                filters.append(                    (text("documents.doc_metadata ->> :key LIKE :value")).params(key=metadata_name, value=f"%{value}%")                )            case "not contains":                filters.append(                    (text("documents.doc_metadata ->> :key NOT LIKE :value")).params(                        key=metadata_name, value=f"%{value}%"                    )                )            case "start with":                filters.append(                    (text("documents.doc_metadata ->> :key LIKE :value")).params(key=metadata_name, value=f"{value}%")                )            case "end with":                filters.append(                    (text("documents.doc_metadata ->> :key LIKE :value")).params(key=metadata_name, value=f"%{value}")                )            case "is" | "=":                if isinstance(value, str):                    filters.append(DatasetDocument.doc_metadata[metadata_name] == f'"{value}"')                else:                    filters.append(                        sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) == value                    )            case "is not" | "≠":                if isinstance(value, str):                    filters.append(DatasetDocument.doc_metadata[metadata_name] != f'"{value}"')                else:                    filters.append(                        sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) != value                    )            case "empty":                filters.append(DatasetDocument.doc_metadata[metadata_name].is_(None))            case "not empty":                filters.append(DatasetDocument.doc_metadata[metadata_name].isnot(None))            case "before" | "<":                filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) < value)            case "after" | ">":                filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) > value)            case "≤" | "<=":                filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) <= value)            case "≥" | ">=":                filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) >= value)            case _:                pass        return filters    def _fetch_model_config(        self, tenant_id: str, model: ModelConfig    ) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]:        """        Fetch model config        :param node_data: node data        :return:        """        if model is None:            raise ValueError("single_retrieval_config is required")        model_name = model.name        provider_name = model.provider        model_manager = ModelManager()        model_instance = model_manager.get_model_instance(            tenant_id=tenant_id, model_type=ModelType.LLM, provider=provider_name, model=model_name        )        provider_model_bundle = model_instance.provider_model_bundle        model_type_instance = model_instance.model_type_instance        model_type_instance = cast(LargeLanguageModel, model_type_instance)        model_credentials = model_instance.credentials        # check model        provider_model = provider_model_bundle.configuration.get_provider_model(            model=model_name, model_type=ModelType.LLM        )        if provider_model is None:            raise ValueError(f"Model {model_name} not exist.")        if provider_model.status == ModelStatus.NO_CONFIGURE:            raise ValueError(f"Model {model_name} credentials is not initialized.")        elif provider_model.status == ModelStatus.NO_PERMISSION:            raise ValueError(f"Dify Hosted OpenAI {model_name} currently not support.")        elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:            raise ValueError(f"Model provider {provider_name} quota exceeded.")        # model config        completion_params = model.completion_params        stop = []        if "stop" in completion_params:            stop = completion_params["stop"]            del completion_params["stop"]        # get model mode        model_mode = model.mode        if not model_mode:            raise ValueError("LLM mode is required.")        model_schema = model_type_instance.get_model_schema(model_name, model_credentials)        if not model_schema:            raise ValueError(f"Model {model_name} not exist.")        return model_instance, ModelConfigWithCredentialsEntity(            provider=provider_name,            model=model_name,            model_schema=model_schema,            mode=model_mode,            provider_model_bundle=provider_model_bundle,            credentials=model_credentials,            parameters=completion_params,            stop=stop,        )    def _get_prompt_template(        self, model_config: ModelConfigWithCredentialsEntity, mode: str, metadata_fields: list, query: str    ):        model_mode = ModelMode.value_of(mode)        input_text = query        prompt_template: Union[CompletionModelPromptTemplate, list[ChatModelMessage]]        if model_mode == ModelMode.CHAT:            prompt_template = []            system_prompt_messages = ChatModelMessage(role=PromptMessageRole.SYSTEM, text=METADATA_FILTER_SYSTEM_PROMPT)            prompt_template.append(system_prompt_messages)            user_prompt_message_1 = ChatModelMessage(role=PromptMessageRole.USER, text=METADATA_FILTER_USER_PROMPT_1)            prompt_template.append(user_prompt_message_1)            assistant_prompt_message_1 = ChatModelMessage(                role=PromptMessageRole.ASSISTANT, text=METADATA_FILTER_ASSISTANT_PROMPT_1            )            prompt_template.append(assistant_prompt_message_1)            user_prompt_message_2 = ChatModelMessage(role=PromptMessageRole.USER, text=METADATA_FILTER_USER_PROMPT_2)            prompt_template.append(user_prompt_message_2)            assistant_prompt_message_2 = ChatModelMessage(                role=PromptMessageRole.ASSISTANT, text=METADATA_FILTER_ASSISTANT_PROMPT_2            )            prompt_template.append(assistant_prompt_message_2)            user_prompt_message_3 = ChatModelMessage(                role=PromptMessageRole.USER,                text=METADATA_FILTER_USER_PROMPT_3.format(                    input_text=input_text,                    metadata_fields=json.dumps(metadata_fields, ensure_ascii=False),                ),            )            prompt_template.append(user_prompt_message_3)        elif model_mode == ModelMode.COMPLETION:            prompt_template = CompletionModelPromptTemplate(                text=METADATA_FILTER_COMPLETION_PROMPT.format(                    input_text=input_text,                    metadata_fields=json.dumps(metadata_fields, ensure_ascii=False),                )            )        else:            raise ValueError(f"Model mode {model_mode} not support.")        prompt_transform = AdvancedPromptTransform()        prompt_messages = prompt_transform.get_prompt(            prompt_template=prompt_template,            inputs={},            query=query or "",            files=[],            context=None,            memory_config=None,            memory=None,            model_config=model_config,        )        stop = model_config.stop        return prompt_messages, stop    def _handle_invoke_result(self, invoke_result: Generator) -> tuple[str, LLMUsage]:        """        Handle invoke result        :param invoke_result: invoke result        :return:        """        model = None        prompt_messages: list[PromptMessage] = []        full_text = ""        usage = None        for result in invoke_result:            text = result.delta.message.content            full_text += text            if not model:                model = result.model            if not prompt_messages:                prompt_messages = result.prompt_messages            if not usage and result.delta.usage:                usage = result.delta.usage        if not usage:            usage = LLMUsage.empty_usage()        return full_text, usage
 |