| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404 | from flask import requestfrom flask_login import current_user  # type: ignorefrom flask_restful import marshal, reqparse  # type: ignorefrom werkzeug.exceptions import NotFoundfrom controllers.service_api import apifrom controllers.service_api.app.error import ProviderNotInitializeErrorfrom controllers.service_api.wraps import (    DatasetApiResource,    cloud_edition_billing_knowledge_limit_check,    cloud_edition_billing_resource_check,)from core.errors.error import LLMBadRequestError, ProviderTokenNotInitErrorfrom core.model_manager import ModelManagerfrom core.model_runtime.entities.model_entities import ModelTypefrom extensions.ext_database import dbfrom fields.segment_fields import child_chunk_fields, segment_fieldsfrom models.dataset import Datasetfrom services.dataset_service import DatasetService, DocumentService, SegmentServicefrom services.entities.knowledge_entities.knowledge_entities import SegmentUpdateArgsfrom services.errors.chunk import (    ChildChunkDeleteIndexError,    ChildChunkIndexingError,)from services.errors.chunk import (    ChildChunkDeleteIndexError as ChildChunkDeleteIndexServiceError,)from services.errors.chunk import (    ChildChunkIndexingError as ChildChunkIndexingServiceError,)class SegmentApi(DatasetApiResource):    """Resource for segments."""    @cloud_edition_billing_resource_check("vector_space", "dataset")    @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")    def post(self, tenant_id, dataset_id, document_id):        """Create single segment."""        # check dataset        dataset_id = str(dataset_id)        tenant_id = str(tenant_id)        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()        if not dataset:            raise NotFound("Dataset not found.")        # check document        document_id = str(document_id)        document = DocumentService.get_document(dataset.id, document_id)        if not document:            raise NotFound("Document not found.")        if document.indexing_status != "completed":            raise NotFound("Document is not completed.")        if not document.enabled:            raise NotFound("Document is disabled.")        # check embedding model setting        if dataset.indexing_technique == "high_quality":            try:                model_manager = ModelManager()                model_manager.get_model_instance(                    tenant_id=current_user.current_tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model,                )            except LLMBadRequestError:                raise ProviderNotInitializeError(                    "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."                )            except ProviderTokenNotInitError as ex:                raise ProviderNotInitializeError(ex.description)        # validate args        parser = reqparse.RequestParser()        parser.add_argument("segments", type=list, required=False, nullable=True, location="json")        args = parser.parse_args()        if args["segments"] is not None:            for args_item in args["segments"]:                SegmentService.segment_create_args_validate(args_item, document)            segments = SegmentService.multi_create_segment(args["segments"], document, dataset)            return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form}, 200        else:            return {"error": "Segments is required"}, 400    def get(self, tenant_id, dataset_id, document_id):        """Get segments."""        # check dataset        dataset_id = str(dataset_id)        tenant_id = str(tenant_id)        page = request.args.get("page", default=1, type=int)        limit = request.args.get("limit", default=20, type=int)        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()        if not dataset:            raise NotFound("Dataset not found.")        # check document        document_id = str(document_id)        document = DocumentService.get_document(dataset.id, document_id)        if not document:            raise NotFound("Document not found.")        # check embedding model setting        if dataset.indexing_technique == "high_quality":            try:                model_manager = ModelManager()                model_manager.get_model_instance(                    tenant_id=current_user.current_tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model,                )            except LLMBadRequestError:                raise ProviderNotInitializeError(                    "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."                )            except ProviderTokenNotInitError as ex:                raise ProviderNotInitializeError(ex.description)        parser = reqparse.RequestParser()        parser.add_argument("status", type=str, action="append", default=[], location="args")        parser.add_argument("keyword", type=str, default=None, location="args")        args = parser.parse_args()        status_list = args["status"]        keyword = args["keyword"]        segments, total = SegmentService.get_segments(            document_id=document_id,            tenant_id=current_user.current_tenant_id,            status_list=args["status"],            keyword=args["keyword"],        )        response = {            "data": marshal(segments, segment_fields),            "doc_form": document.doc_form,            "total": total,            "has_more": len(segments) == limit,            "limit": limit,            "page": page,        }        return response, 200class DatasetSegmentApi(DatasetApiResource):    def delete(self, tenant_id, dataset_id, document_id, segment_id):        # check dataset        dataset_id = str(dataset_id)        tenant_id = str(tenant_id)        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()        if not dataset:            raise NotFound("Dataset not found.")        # check user's model setting        DatasetService.check_dataset_model_setting(dataset)        # check document        document_id = str(document_id)        document = DocumentService.get_document(dataset_id, document_id)        if not document:            raise NotFound("Document not found.")        # check segment        segment_id = str(segment_id)        segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)        if not segment:            raise NotFound("Segment not found.")        SegmentService.delete_segment(segment, document, dataset)        return {"result": "success"}, 200    @cloud_edition_billing_resource_check("vector_space", "dataset")    def post(self, tenant_id, dataset_id, document_id, segment_id):        # check dataset        dataset_id = str(dataset_id)        tenant_id = str(tenant_id)        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()        if not dataset:            raise NotFound("Dataset not found.")        # check user's model setting        DatasetService.check_dataset_model_setting(dataset)        # check document        document_id = str(document_id)        document = DocumentService.get_document(dataset_id, document_id)        if not document:            raise NotFound("Document not found.")        if dataset.indexing_technique == "high_quality":            # check embedding model setting            try:                model_manager = ModelManager()                model_manager.get_model_instance(                    tenant_id=current_user.current_tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model,                )            except LLMBadRequestError:                raise ProviderNotInitializeError(                    "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."                )            except ProviderTokenNotInitError as ex:                raise ProviderNotInitializeError(ex.description)            # check segment        segment_id = str(segment_id)        segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)        if not segment:            raise NotFound("Segment not found.")        # validate args        parser = reqparse.RequestParser()        parser.add_argument("segment", type=dict, required=False, nullable=True, location="json")        args = parser.parse_args()        updated_segment = SegmentService.update_segment(            SegmentUpdateArgs(**args["segment"]), segment, document, dataset        )        return {"data": marshal(updated_segment, segment_fields), "doc_form": document.doc_form}, 200class ChildChunkApi(DatasetApiResource):    """Resource for child chunks."""    @cloud_edition_billing_resource_check("vector_space", "dataset")    @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")    def post(self, tenant_id, dataset_id, document_id, segment_id):        """Create child chunk."""        # check dataset        dataset_id = str(dataset_id)        tenant_id = str(tenant_id)        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()        if not dataset:            raise NotFound("Dataset not found.")        # check document        document_id = str(document_id)        document = DocumentService.get_document(dataset.id, document_id)        if not document:            raise NotFound("Document not found.")        # check segment        segment_id = str(segment_id)        segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)        if not segment:            raise NotFound("Segment not found.")        # check embedding model setting        if dataset.indexing_technique == "high_quality":            try:                model_manager = ModelManager()                model_manager.get_model_instance(                    tenant_id=current_user.current_tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model,                )            except LLMBadRequestError:                raise ProviderNotInitializeError(                    "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."                )            except ProviderTokenNotInitError as ex:                raise ProviderNotInitializeError(ex.description)        # validate args        parser = reqparse.RequestParser()        parser.add_argument("content", type=str, required=True, nullable=False, location="json")        args = parser.parse_args()        try:            child_chunk = SegmentService.create_child_chunk(args.get("content"), segment, document, dataset)        except ChildChunkIndexingServiceError as e:            raise ChildChunkIndexingError(str(e))        return {"data": marshal(child_chunk, child_chunk_fields)}, 200    def get(self, tenant_id, dataset_id, document_id, segment_id):        """Get child chunks."""        # check dataset        dataset_id = str(dataset_id)        tenant_id = str(tenant_id)        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()        if not dataset:            raise NotFound("Dataset not found.")        # check document        document_id = str(document_id)        document = DocumentService.get_document(dataset.id, document_id)        if not document:            raise NotFound("Document not found.")        # check segment        segment_id = str(segment_id)        segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)        if not segment:            raise NotFound("Segment not found.")        parser = reqparse.RequestParser()        parser.add_argument("limit", type=int, default=20, location="args")        parser.add_argument("keyword", type=str, default=None, location="args")        parser.add_argument("page", type=int, default=1, location="args")        args = parser.parse_args()        page = args["page"]        limit = min(args["limit"], 100)        keyword = args["keyword"]        child_chunks = SegmentService.get_child_chunks(segment_id, document_id, dataset_id, page, limit, keyword)        return {            "data": marshal(child_chunks.items, child_chunk_fields),            "total": child_chunks.total,            "total_pages": child_chunks.pages,            "page": page,            "limit": limit,        }, 200class DatasetChildChunkApi(DatasetApiResource):    """Resource for updating child chunks."""    @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")    def delete(self, tenant_id, dataset_id, document_id, segment_id, child_chunk_id):        """Delete child chunk."""        # check dataset        dataset_id = str(dataset_id)        tenant_id = str(tenant_id)        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()        if not dataset:            raise NotFound("Dataset not found.")        # check document        document_id = str(document_id)        document = DocumentService.get_document(dataset.id, document_id)        if not document:            raise NotFound("Document not found.")        # check segment        segment_id = str(segment_id)        segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)        if not segment:            raise NotFound("Segment not found.")        # check child chunk        child_chunk_id = str(child_chunk_id)        child_chunk = SegmentService.get_child_chunk_by_id(            child_chunk_id=child_chunk_id, tenant_id=current_user.current_tenant_id        )        if not child_chunk:            raise NotFound("Child chunk not found.")        try:            SegmentService.delete_child_chunk(child_chunk, dataset)        except ChildChunkDeleteIndexServiceError as e:            raise ChildChunkDeleteIndexError(str(e))        return {"result": "success"}, 200    @cloud_edition_billing_resource_check("vector_space", "dataset")    @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")    def patch(self, tenant_id, dataset_id, document_id, segment_id, child_chunk_id):        """Update child chunk."""        # check dataset        dataset_id = str(dataset_id)        tenant_id = str(tenant_id)        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()        if not dataset:            raise NotFound("Dataset not found.")        # get document        document = DocumentService.get_document(dataset_id, document_id)        if not document:            raise NotFound("Document not found.")        # get segment        segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)        if not segment:            raise NotFound("Segment not found.")        # get child chunk        child_chunk = SegmentService.get_child_chunk_by_id(            child_chunk_id=child_chunk_id, tenant_id=current_user.current_tenant_id        )        if not child_chunk:            raise NotFound("Child chunk not found.")        # validate args        parser = reqparse.RequestParser()        parser.add_argument("content", type=str, required=True, nullable=False, location="json")        args = parser.parse_args()        try:            child_chunk = SegmentService.update_child_chunk(                args.get("content"), child_chunk, segment, document, dataset            )        except ChildChunkIndexingServiceError as e:            raise ChildChunkIndexingError(str(e))        return {"data": marshal(child_chunk, child_chunk_fields)}, 200api.add_resource(SegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments")api.add_resource(    DatasetSegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>")api.add_resource(    ChildChunkApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>/child_chunks")api.add_resource(    DatasetChildChunkApi,    "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>/child_chunks/<uuid:child_chunk_id>",)
 |