Yeuoly 7a2b2a04c9 Merge branch 'main' into fix/chore-fix 8 mesi fa
..
.idea 7ae728a9a3 fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 10 mesi fa
.vscode e61752bd3a feat/enhance the multi-modal support (#8818) 8 mesi fa
configs 7a2b2a04c9 Merge branch 'main' into fix/chore-fix 8 mesi fa
constants 3e9d271b52 nltk security issue and upgrade unstructured (#9558) 8 mesi fa
contexts e61752bd3a feat/enhance the multi-modal support (#8818) 8 mesi fa
controllers 7a2b2a04c9 Merge branch 'main' into fix/chore-fix 8 mesi fa
core 7a2b2a04c9 Merge branch 'main' into fix/chore-fix 8 mesi fa
docker 8dfdb37de3 fix: use LOG_LEVEL for celery startup (#7628) 10 mesi fa
events e61752bd3a feat/enhance the multi-modal support (#8818) 8 mesi fa
extensions 7a2b2a04c9 Merge branch 'main' into fix/chore-fix 8 mesi fa
factories 3c89d45a2d fix: iteration none output error (#10295) 8 mesi fa
fields 6e23903c63 Conversation delete issue (#10423) 8 mesi fa
libs 7a2b2a04c9 Merge branch 'main' into fix/chore-fix 8 mesi fa
migrations 413326905e rebase migrations 8 mesi fa
models fe677cc5f9 Merge branch 'main' into fix/chore-fix 8 mesi fa
schedule d1c480a7d8 fix: Cannot find declaration to go to CLEAN_DAY_SETTING (#10157) 8 mesi fa
services 7a2b2a04c9 Merge branch 'main' into fix/chore-fix 8 mesi fa
tasks 4fd2743efa Feat/new login (#8120) 8 mesi fa
templates 4fd2743efa Feat/new login (#8120) 8 mesi fa
tests 7a2b2a04c9 Merge branch 'main' into fix/chore-fix 8 mesi fa
.dockerignore 7c83d5ce76 feat: add dockerignore items 9 mesi fa
.env.example 7a2b2a04c9 Merge branch 'main' into fix/chore-fix 8 mesi fa
Dockerfile 0dda682033 chore(Dockerfile): upgrade zlib arm64 (#10244) 8 mesi fa
README.md eafe5a9d8f chore(ci): bring back poetry cache to speed up CI jobs (#10347) 8 mesi fa
app.py 0e8ab0588f fix: (#10437 followup) fix conditions with DEBUG config (#10438) 8 mesi fa
app_factory.py 0e8ab0588f fix: (#10437 followup) fix conditions with DEBUG config (#10438) 8 mesi fa
commands.py 10cc4e758c Merge branch 'main' into fix/chore-fix 8 mesi fa
poetry.lock fe677cc5f9 Merge branch 'main' into fix/chore-fix 8 mesi fa
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 1 anno fa
pyproject.toml 7a2b2a04c9 Merge branch 'main' into fix/chore-fix 8 mesi fa
pytest.ini 0ebd985672 feat: add models for gitee.ai (#9490) 8 mesi fa

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

```bash for Linux sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env


   ```bash for Mac
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install -C api --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   poetry run -C api bash dev/pytest/pytest_all_tests.sh