hit_testing_service.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196
  1. import json
  2. import logging
  3. import threading
  4. import time
  5. from typing import List
  6. import numpy as np
  7. from flask import current_app
  8. from langchain.embeddings.base import Embeddings
  9. from langchain.schema import Document
  10. from sklearn.manifold import TSNE
  11. from core.embedding.cached_embedding import CacheEmbedding
  12. from core.model_providers.model_factory import ModelFactory
  13. from extensions.ext_database import db
  14. from models.account import Account
  15. from models.dataset import Dataset, DocumentSegment, DatasetQuery
  16. from services.retrieval_service import RetrievalService
  17. default_retrieval_model = {
  18. 'search_method': 'semantic_search',
  19. 'reranking_enable': False,
  20. 'reranking_model': {
  21. 'reranking_provider_name': '',
  22. 'reranking_model_name': ''
  23. },
  24. 'top_k': 2,
  25. 'score_threshold_enabled': False
  26. }
  27. class HitTestingService:
  28. @classmethod
  29. def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_model: dict, limit: int = 10) -> dict:
  30. if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  31. return {
  32. "query": {
  33. "content": query,
  34. "tsne_position": {'x': 0, 'y': 0},
  35. },
  36. "records": []
  37. }
  38. start = time.perf_counter()
  39. # get retrieval model , if the model is not setting , using default
  40. if not retrieval_model:
  41. retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
  42. # get embedding model
  43. embedding_model = ModelFactory.get_embedding_model(
  44. tenant_id=dataset.tenant_id,
  45. model_provider_name=dataset.embedding_model_provider,
  46. model_name=dataset.embedding_model
  47. )
  48. embeddings = CacheEmbedding(embedding_model)
  49. all_documents = []
  50. threads = []
  51. # retrieval_model source with semantic
  52. if retrieval_model['search_method'] == 'semantic_search' or retrieval_model['search_method'] == 'hybrid_search':
  53. embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
  54. 'flask_app': current_app._get_current_object(),
  55. 'dataset_id': str(dataset.id),
  56. 'query': query,
  57. 'top_k': retrieval_model['top_k'],
  58. 'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
  59. 'reranking_model': retrieval_model['reranking_model'] if retrieval_model['reranking_enable'] else None,
  60. 'all_documents': all_documents,
  61. 'search_method': retrieval_model['search_method'],
  62. 'embeddings': embeddings
  63. })
  64. threads.append(embedding_thread)
  65. embedding_thread.start()
  66. # retrieval source with full text
  67. if retrieval_model['search_method'] == 'full_text_search' or retrieval_model['search_method'] == 'hybrid_search':
  68. full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
  69. 'flask_app': current_app._get_current_object(),
  70. 'dataset_id': str(dataset.id),
  71. 'query': query,
  72. 'search_method': retrieval_model['search_method'],
  73. 'embeddings': embeddings,
  74. 'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
  75. 'top_k': retrieval_model['top_k'],
  76. 'reranking_model': retrieval_model['reranking_model'] if retrieval_model['reranking_enable'] else None,
  77. 'all_documents': all_documents
  78. })
  79. threads.append(full_text_index_thread)
  80. full_text_index_thread.start()
  81. for thread in threads:
  82. thread.join()
  83. if retrieval_model['search_method'] == 'hybrid_search':
  84. hybrid_rerank = ModelFactory.get_reranking_model(
  85. tenant_id=dataset.tenant_id,
  86. model_provider_name=retrieval_model['reranking_model']['reranking_provider_name'],
  87. model_name=retrieval_model['reranking_model']['reranking_model_name']
  88. )
  89. all_documents = hybrid_rerank.rerank(query, all_documents,
  90. retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
  91. retrieval_model['top_k'])
  92. end = time.perf_counter()
  93. logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
  94. dataset_query = DatasetQuery(
  95. dataset_id=dataset.id,
  96. content=query,
  97. source='hit_testing',
  98. created_by_role='account',
  99. created_by=account.id
  100. )
  101. db.session.add(dataset_query)
  102. db.session.commit()
  103. return cls.compact_retrieve_response(dataset, embeddings, query, all_documents)
  104. @classmethod
  105. def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: List[Document]):
  106. text_embeddings = [
  107. embeddings.embed_query(query)
  108. ]
  109. text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))
  110. tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)
  111. query_position = tsne_position_data.pop(0)
  112. i = 0
  113. records = []
  114. for document in documents:
  115. index_node_id = document.metadata['doc_id']
  116. segment = db.session.query(DocumentSegment).filter(
  117. DocumentSegment.dataset_id == dataset.id,
  118. DocumentSegment.enabled == True,
  119. DocumentSegment.status == 'completed',
  120. DocumentSegment.index_node_id == index_node_id
  121. ).first()
  122. if not segment:
  123. i += 1
  124. continue
  125. record = {
  126. "segment": segment,
  127. "score": document.metadata.get('score', None),
  128. "tsne_position": tsne_position_data[i]
  129. }
  130. records.append(record)
  131. i += 1
  132. return {
  133. "query": {
  134. "content": query,
  135. "tsne_position": query_position,
  136. },
  137. "records": records
  138. }
  139. @classmethod
  140. def get_tsne_positions_from_embeddings(cls, embeddings: list):
  141. embedding_length = len(embeddings)
  142. if embedding_length <= 1:
  143. return [{'x': 0, 'y': 0}]
  144. concatenate_data = np.array(embeddings).reshape(embedding_length, -1)
  145. # concatenate_data = np.concatenate(embeddings)
  146. perplexity = embedding_length / 2 + 1
  147. if perplexity >= embedding_length:
  148. perplexity = max(embedding_length - 1, 1)
  149. tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)
  150. data_tsne = tsne.fit_transform(concatenate_data)
  151. tsne_position_data = []
  152. for i in range(len(data_tsne)):
  153. tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})
  154. return tsne_position_data
  155. @classmethod
  156. def hit_testing_args_check(cls, args):
  157. query = args['query']
  158. if not query or len(query) > 250:
  159. raise ValueError('Query is required and cannot exceed 250 characters')