base.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306
  1. import json
  2. import logging
  3. from abc import abstractmethod
  4. from typing import Any, List, cast
  5. from core.index.base import BaseIndex
  6. from extensions.ext_database import db
  7. from langchain.embeddings.base import Embeddings
  8. from langchain.schema import BaseRetriever, Document
  9. from langchain.vectorstores import VectorStore
  10. from models.dataset import Dataset, DatasetCollectionBinding
  11. from models.dataset import Document as DatasetDocument
  12. from models.dataset import DocumentSegment
  13. class BaseVectorIndex(BaseIndex):
  14. def __init__(self, dataset: Dataset, embeddings: Embeddings):
  15. super().__init__(dataset)
  16. self._embeddings = embeddings
  17. self._vector_store = None
  18. def get_type(self) -> str:
  19. raise NotImplementedError
  20. @abstractmethod
  21. def get_index_name(self, dataset: Dataset) -> str:
  22. raise NotImplementedError
  23. @abstractmethod
  24. def to_index_struct(self) -> dict:
  25. raise NotImplementedError
  26. @abstractmethod
  27. def _get_vector_store(self) -> VectorStore:
  28. raise NotImplementedError
  29. @abstractmethod
  30. def _get_vector_store_class(self) -> type:
  31. raise NotImplementedError
  32. @abstractmethod
  33. def search_by_full_text_index(
  34. self, query: str,
  35. **kwargs: Any
  36. ) -> List[Document]:
  37. raise NotImplementedError
  38. def search(
  39. self, query: str,
  40. **kwargs: Any
  41. ) -> List[Document]:
  42. vector_store = self._get_vector_store()
  43. vector_store = cast(self._get_vector_store_class(), vector_store)
  44. search_type = kwargs.get('search_type') if kwargs.get('search_type') else 'similarity'
  45. search_kwargs = kwargs.get('search_kwargs') if kwargs.get('search_kwargs') else {}
  46. if search_type == 'similarity_score_threshold':
  47. score_threshold = search_kwargs.get("score_threshold")
  48. if (score_threshold is None) or (not isinstance(score_threshold, float)):
  49. search_kwargs['score_threshold'] = .0
  50. docs_with_similarity = vector_store.similarity_search_with_relevance_scores(
  51. query, **search_kwargs
  52. )
  53. docs = []
  54. for doc, similarity in docs_with_similarity:
  55. doc.metadata['score'] = similarity
  56. docs.append(doc)
  57. return docs
  58. # similarity k
  59. # mmr k, fetch_k, lambda_mult
  60. # similarity_score_threshold k
  61. return vector_store.as_retriever(
  62. search_type=search_type,
  63. search_kwargs=search_kwargs
  64. ).get_relevant_documents(query)
  65. def get_retriever(self, **kwargs: Any) -> BaseRetriever:
  66. vector_store = self._get_vector_store()
  67. vector_store = cast(self._get_vector_store_class(), vector_store)
  68. return vector_store.as_retriever(**kwargs)
  69. def add_texts(self, texts: list[Document], **kwargs):
  70. if self._is_origin():
  71. self.recreate_dataset(self.dataset)
  72. vector_store = self._get_vector_store()
  73. vector_store = cast(self._get_vector_store_class(), vector_store)
  74. if kwargs.get('duplicate_check', False):
  75. texts = self._filter_duplicate_texts(texts)
  76. uuids = self._get_uuids(texts)
  77. vector_store.add_documents(texts, uuids=uuids)
  78. def text_exists(self, id: str) -> bool:
  79. vector_store = self._get_vector_store()
  80. vector_store = cast(self._get_vector_store_class(), vector_store)
  81. return vector_store.text_exists(id)
  82. def delete_by_ids(self, ids: list[str]) -> None:
  83. if self._is_origin():
  84. self.recreate_dataset(self.dataset)
  85. return
  86. vector_store = self._get_vector_store()
  87. vector_store = cast(self._get_vector_store_class(), vector_store)
  88. for node_id in ids:
  89. vector_store.del_text(node_id)
  90. def delete_by_group_id(self, group_id: str) -> None:
  91. vector_store = self._get_vector_store()
  92. vector_store = cast(self._get_vector_store_class(), vector_store)
  93. if self.dataset.collection_binding_id:
  94. vector_store.delete_by_group_id(group_id)
  95. else:
  96. vector_store.delete()
  97. def delete(self) -> None:
  98. vector_store = self._get_vector_store()
  99. vector_store = cast(self._get_vector_store_class(), vector_store)
  100. vector_store.delete()
  101. def _is_origin(self):
  102. return False
  103. def recreate_dataset(self, dataset: Dataset):
  104. logging.info(f"Recreating dataset {dataset.id}")
  105. try:
  106. self.delete()
  107. except Exception as e:
  108. raise e
  109. dataset_documents = db.session.query(DatasetDocument).filter(
  110. DatasetDocument.dataset_id == dataset.id,
  111. DatasetDocument.indexing_status == 'completed',
  112. DatasetDocument.enabled == True,
  113. DatasetDocument.archived == False,
  114. ).all()
  115. documents = []
  116. for dataset_document in dataset_documents:
  117. segments = db.session.query(DocumentSegment).filter(
  118. DocumentSegment.document_id == dataset_document.id,
  119. DocumentSegment.status == 'completed',
  120. DocumentSegment.enabled == True
  121. ).all()
  122. for segment in segments:
  123. document = Document(
  124. page_content=segment.content,
  125. metadata={
  126. "doc_id": segment.index_node_id,
  127. "doc_hash": segment.index_node_hash,
  128. "document_id": segment.document_id,
  129. "dataset_id": segment.dataset_id,
  130. }
  131. )
  132. documents.append(document)
  133. origin_index_struct = self.dataset.index_struct[:]
  134. self.dataset.index_struct = None
  135. if documents:
  136. try:
  137. self.create(documents)
  138. except Exception as e:
  139. self.dataset.index_struct = origin_index_struct
  140. raise e
  141. dataset.index_struct = json.dumps(self.to_index_struct())
  142. db.session.commit()
  143. self.dataset = dataset
  144. logging.info(f"Dataset {dataset.id} recreate successfully.")
  145. def create_qdrant_dataset(self, dataset: Dataset):
  146. logging.info(f"create_qdrant_dataset {dataset.id}")
  147. try:
  148. self.delete()
  149. except Exception as e:
  150. raise e
  151. dataset_documents = db.session.query(DatasetDocument).filter(
  152. DatasetDocument.dataset_id == dataset.id,
  153. DatasetDocument.indexing_status == 'completed',
  154. DatasetDocument.enabled == True,
  155. DatasetDocument.archived == False,
  156. ).all()
  157. documents = []
  158. for dataset_document in dataset_documents:
  159. segments = db.session.query(DocumentSegment).filter(
  160. DocumentSegment.document_id == dataset_document.id,
  161. DocumentSegment.status == 'completed',
  162. DocumentSegment.enabled == True
  163. ).all()
  164. for segment in segments:
  165. document = Document(
  166. page_content=segment.content,
  167. metadata={
  168. "doc_id": segment.index_node_id,
  169. "doc_hash": segment.index_node_hash,
  170. "document_id": segment.document_id,
  171. "dataset_id": segment.dataset_id,
  172. }
  173. )
  174. documents.append(document)
  175. if documents:
  176. try:
  177. self.create(documents)
  178. except Exception as e:
  179. raise e
  180. logging.info(f"Dataset {dataset.id} recreate successfully.")
  181. def update_qdrant_dataset(self, dataset: Dataset):
  182. logging.info(f"update_qdrant_dataset {dataset.id}")
  183. segment = db.session.query(DocumentSegment).filter(
  184. DocumentSegment.dataset_id == dataset.id,
  185. DocumentSegment.status == 'completed',
  186. DocumentSegment.enabled == True
  187. ).first()
  188. if segment:
  189. try:
  190. exist = self.text_exists(segment.index_node_id)
  191. if exist:
  192. index_struct = {
  193. "type": 'qdrant',
  194. "vector_store": {"class_prefix": dataset.index_struct_dict['vector_store']['class_prefix']}
  195. }
  196. dataset.index_struct = json.dumps(index_struct)
  197. db.session.commit()
  198. except Exception as e:
  199. raise e
  200. logging.info(f"Dataset {dataset.id} recreate successfully.")
  201. def restore_dataset_in_one(self, dataset: Dataset, dataset_collection_binding: DatasetCollectionBinding):
  202. logging.info(f"restore dataset in_one,_dataset {dataset.id}")
  203. dataset_documents = db.session.query(DatasetDocument).filter(
  204. DatasetDocument.dataset_id == dataset.id,
  205. DatasetDocument.indexing_status == 'completed',
  206. DatasetDocument.enabled == True,
  207. DatasetDocument.archived == False,
  208. ).all()
  209. documents = []
  210. for dataset_document in dataset_documents:
  211. segments = db.session.query(DocumentSegment).filter(
  212. DocumentSegment.document_id == dataset_document.id,
  213. DocumentSegment.status == 'completed',
  214. DocumentSegment.enabled == True
  215. ).all()
  216. for segment in segments:
  217. document = Document(
  218. page_content=segment.content,
  219. metadata={
  220. "doc_id": segment.index_node_id,
  221. "doc_hash": segment.index_node_hash,
  222. "document_id": segment.document_id,
  223. "dataset_id": segment.dataset_id,
  224. }
  225. )
  226. documents.append(document)
  227. if documents:
  228. try:
  229. self.add_texts(documents)
  230. except Exception as e:
  231. raise e
  232. logging.info(f"Dataset {dataset.id} recreate successfully.")
  233. def delete_original_collection(self, dataset: Dataset, dataset_collection_binding: DatasetCollectionBinding):
  234. logging.info(f"delete original collection: {dataset.id}")
  235. self.delete()
  236. dataset.collection_binding_id = dataset_collection_binding.id
  237. db.session.add(dataset)
  238. db.session.commit()
  239. logging.info(f"Dataset {dataset.id} recreate successfully.")