dataset_retrieval.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180
  1. from typing import List, Optional, cast
  2. from core.agent.agent_executor import AgentConfiguration, AgentExecutor, PlanningStrategy
  3. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  4. from core.entities.application_entities import DatasetEntity, DatasetRetrieveConfigEntity, InvokeFrom, ModelConfigEntity
  5. from core.memory.token_buffer_memory import TokenBufferMemory
  6. from core.model_runtime.entities.model_entities import ModelFeature
  7. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  8. from core.tool.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
  9. from core.tool.dataset_retriever_tool import DatasetRetrieverTool
  10. from extensions.ext_database import db
  11. from langchain.tools import BaseTool
  12. from models.dataset import Dataset
  13. class DatasetRetrievalFeature:
  14. def retrieve(self, tenant_id: str,
  15. model_config: ModelConfigEntity,
  16. config: DatasetEntity,
  17. query: str,
  18. invoke_from: InvokeFrom,
  19. show_retrieve_source: bool,
  20. hit_callback: DatasetIndexToolCallbackHandler,
  21. memory: Optional[TokenBufferMemory] = None) -> Optional[str]:
  22. """
  23. Retrieve dataset.
  24. :param tenant_id: tenant id
  25. :param model_config: model config
  26. :param config: dataset config
  27. :param query: query
  28. :param invoke_from: invoke from
  29. :param show_retrieve_source: show retrieve source
  30. :param hit_callback: hit callback
  31. :param memory: memory
  32. :return:
  33. """
  34. dataset_ids = config.dataset_ids
  35. retrieve_config = config.retrieve_config
  36. # check model is support tool calling
  37. model_type_instance = model_config.provider_model_bundle.model_type_instance
  38. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  39. # get model schema
  40. model_schema = model_type_instance.get_model_schema(
  41. model=model_config.model,
  42. credentials=model_config.credentials
  43. )
  44. if not model_schema:
  45. return None
  46. planning_strategy = PlanningStrategy.REACT_ROUTER
  47. features = model_schema.features
  48. if features:
  49. if ModelFeature.TOOL_CALL in features \
  50. or ModelFeature.MULTI_TOOL_CALL in features:
  51. planning_strategy = PlanningStrategy.ROUTER
  52. dataset_retriever_tools = self.to_dataset_retriever_tool(
  53. tenant_id=tenant_id,
  54. dataset_ids=dataset_ids,
  55. retrieve_config=retrieve_config,
  56. return_resource=show_retrieve_source,
  57. invoke_from=invoke_from,
  58. hit_callback=hit_callback
  59. )
  60. if len(dataset_retriever_tools) == 0:
  61. return None
  62. agent_configuration = AgentConfiguration(
  63. strategy=planning_strategy,
  64. model_config=model_config,
  65. tools=dataset_retriever_tools,
  66. memory=memory,
  67. max_iterations=10,
  68. max_execution_time=400.0,
  69. early_stopping_method="generate"
  70. )
  71. agent_executor = AgentExecutor(agent_configuration)
  72. should_use_agent = agent_executor.should_use_agent(query)
  73. if not should_use_agent:
  74. return None
  75. result = agent_executor.run(query)
  76. return result.output
  77. def to_dataset_retriever_tool(self, tenant_id: str,
  78. dataset_ids: list[str],
  79. retrieve_config: DatasetRetrieveConfigEntity,
  80. return_resource: bool,
  81. invoke_from: InvokeFrom,
  82. hit_callback: DatasetIndexToolCallbackHandler) \
  83. -> Optional[List[BaseTool]]:
  84. """
  85. A dataset tool is a tool that can be used to retrieve information from a dataset
  86. :param tenant_id: tenant id
  87. :param dataset_ids: dataset ids
  88. :param retrieve_config: retrieve config
  89. :param return_resource: return resource
  90. :param invoke_from: invoke from
  91. :param hit_callback: hit callback
  92. """
  93. tools = []
  94. available_datasets = []
  95. for dataset_id in dataset_ids:
  96. # get dataset from dataset id
  97. dataset = db.session.query(Dataset).filter(
  98. Dataset.tenant_id == tenant_id,
  99. Dataset.id == dataset_id
  100. ).first()
  101. # pass if dataset is not available
  102. if not dataset:
  103. continue
  104. # pass if dataset is not available
  105. if (dataset and dataset.available_document_count == 0
  106. and dataset.available_document_count == 0):
  107. continue
  108. available_datasets.append(dataset)
  109. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  110. # get retrieval model config
  111. default_retrieval_model = {
  112. 'search_method': 'semantic_search',
  113. 'reranking_enable': False,
  114. 'reranking_model': {
  115. 'reranking_provider_name': '',
  116. 'reranking_model_name': ''
  117. },
  118. 'top_k': 2,
  119. 'score_threshold_enabled': False
  120. }
  121. for dataset in available_datasets:
  122. retrieval_model_config = dataset.retrieval_model \
  123. if dataset.retrieval_model else default_retrieval_model
  124. # get top k
  125. top_k = retrieval_model_config['top_k']
  126. # get score threshold
  127. score_threshold = None
  128. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  129. if score_threshold_enabled:
  130. score_threshold = retrieval_model_config.get("score_threshold")
  131. tool = DatasetRetrieverTool.from_dataset(
  132. dataset=dataset,
  133. top_k=top_k,
  134. score_threshold=score_threshold,
  135. hit_callbacks=[hit_callback],
  136. return_resource=return_resource,
  137. retriever_from=invoke_from.to_source()
  138. )
  139. tools.append(tool)
  140. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  141. tool = DatasetMultiRetrieverTool.from_dataset(
  142. dataset_ids=[dataset.id for dataset in available_datasets],
  143. tenant_id=tenant_id,
  144. top_k=retrieve_config.top_k or 2,
  145. score_threshold=retrieve_config.score_threshold,
  146. hit_callbacks=[hit_callback],
  147. return_resource=return_resource,
  148. retriever_from=invoke_from.to_source(),
  149. reranking_provider_name=retrieve_config.reranking_model.get('reranking_provider_name'),
  150. reranking_model_name=retrieve_config.reranking_model.get('reranking_model_name')
  151. )
  152. tools.append(tool)
  153. return tools