123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- from typing import List, Optional, cast
- from core.agent.agent_executor import AgentConfiguration, AgentExecutor, PlanningStrategy
- from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
- from core.entities.application_entities import DatasetEntity, DatasetRetrieveConfigEntity, InvokeFrom, ModelConfigEntity
- from core.memory.token_buffer_memory import TokenBufferMemory
- from core.model_runtime.entities.model_entities import ModelFeature
- from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
- from core.tool.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
- from core.tool.dataset_retriever_tool import DatasetRetrieverTool
- from extensions.ext_database import db
- from langchain.tools import BaseTool
- from models.dataset import Dataset
- class DatasetRetrievalFeature:
- def retrieve(self, tenant_id: str,
- model_config: ModelConfigEntity,
- config: DatasetEntity,
- query: str,
- invoke_from: InvokeFrom,
- show_retrieve_source: bool,
- hit_callback: DatasetIndexToolCallbackHandler,
- memory: Optional[TokenBufferMemory] = None) -> Optional[str]:
- """
- Retrieve dataset.
- :param tenant_id: tenant id
- :param model_config: model config
- :param config: dataset config
- :param query: query
- :param invoke_from: invoke from
- :param show_retrieve_source: show retrieve source
- :param hit_callback: hit callback
- :param memory: memory
- :return:
- """
- dataset_ids = config.dataset_ids
- retrieve_config = config.retrieve_config
- # check model is support tool calling
- model_type_instance = model_config.provider_model_bundle.model_type_instance
- model_type_instance = cast(LargeLanguageModel, model_type_instance)
- # get model schema
- model_schema = model_type_instance.get_model_schema(
- model=model_config.model,
- credentials=model_config.credentials
- )
- if not model_schema:
- return None
- planning_strategy = PlanningStrategy.REACT_ROUTER
- features = model_schema.features
- if features:
- if ModelFeature.TOOL_CALL in features \
- or ModelFeature.MULTI_TOOL_CALL in features:
- planning_strategy = PlanningStrategy.ROUTER
- dataset_retriever_tools = self.to_dataset_retriever_tool(
- tenant_id=tenant_id,
- dataset_ids=dataset_ids,
- retrieve_config=retrieve_config,
- return_resource=show_retrieve_source,
- invoke_from=invoke_from,
- hit_callback=hit_callback
- )
- if len(dataset_retriever_tools) == 0:
- return None
- agent_configuration = AgentConfiguration(
- strategy=planning_strategy,
- model_config=model_config,
- tools=dataset_retriever_tools,
- memory=memory,
- max_iterations=10,
- max_execution_time=400.0,
- early_stopping_method="generate"
- )
- agent_executor = AgentExecutor(agent_configuration)
- should_use_agent = agent_executor.should_use_agent(query)
- if not should_use_agent:
- return None
- result = agent_executor.run(query)
- return result.output
- def to_dataset_retriever_tool(self, tenant_id: str,
- dataset_ids: list[str],
- retrieve_config: DatasetRetrieveConfigEntity,
- return_resource: bool,
- invoke_from: InvokeFrom,
- hit_callback: DatasetIndexToolCallbackHandler) \
- -> Optional[List[BaseTool]]:
- """
- A dataset tool is a tool that can be used to retrieve information from a dataset
- :param tenant_id: tenant id
- :param dataset_ids: dataset ids
- :param retrieve_config: retrieve config
- :param return_resource: return resource
- :param invoke_from: invoke from
- :param hit_callback: hit callback
- """
- tools = []
- available_datasets = []
- for dataset_id in dataset_ids:
- # get dataset from dataset id
- dataset = db.session.query(Dataset).filter(
- Dataset.tenant_id == tenant_id,
- Dataset.id == dataset_id
- ).first()
- # pass if dataset is not available
- if not dataset:
- continue
- # pass if dataset is not available
- if (dataset and dataset.available_document_count == 0
- and dataset.available_document_count == 0):
- continue
- available_datasets.append(dataset)
- if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
- # get retrieval model config
- default_retrieval_model = {
- 'search_method': 'semantic_search',
- 'reranking_enable': False,
- 'reranking_model': {
- 'reranking_provider_name': '',
- 'reranking_model_name': ''
- },
- 'top_k': 2,
- 'score_threshold_enabled': False
- }
- for dataset in available_datasets:
- retrieval_model_config = dataset.retrieval_model \
- if dataset.retrieval_model else default_retrieval_model
- # get top k
- top_k = retrieval_model_config['top_k']
- # get score threshold
- score_threshold = None
- score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
- if score_threshold_enabled:
- score_threshold = retrieval_model_config.get("score_threshold")
- tool = DatasetRetrieverTool.from_dataset(
- dataset=dataset,
- top_k=top_k,
- score_threshold=score_threshold,
- hit_callbacks=[hit_callback],
- return_resource=return_resource,
- retriever_from=invoke_from.to_source()
- )
- tools.append(tool)
- elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
- tool = DatasetMultiRetrieverTool.from_dataset(
- dataset_ids=[dataset.id for dataset in available_datasets],
- tenant_id=tenant_id,
- top_k=retrieve_config.top_k or 2,
- score_threshold=retrieve_config.score_threshold,
- hit_callbacks=[hit_callback],
- return_resource=return_resource,
- retriever_from=invoke_from.to_source(),
- reranking_provider_name=retrieve_config.reranking_model.get('reranking_provider_name'),
- reranking_model_name=retrieve_config.reranking_model.get('reranking_model_name')
- )
- tools.append(tool)
- return tools
|