123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- import logging
- import time
- from typing import List
- import numpy as np
- from flask import current_app
- from langchain.embeddings.base import Embeddings
- from langchain.schema import Document
- from sklearn.manifold import TSNE
- from core.embedding.cached_embedding import CacheEmbedding
- from core.index.vector_index.vector_index import VectorIndex
- from core.model_providers.model_factory import ModelFactory
- from extensions.ext_database import db
- from models.account import Account
- from models.dataset import Dataset, DocumentSegment, DatasetQuery
- class HitTestingService:
- @classmethod
- def retrieve(cls, dataset: Dataset, query: str, account: Account, limit: int = 10) -> dict:
- if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
- return {
- "query": {
- "content": query,
- "tsne_position": {'x': 0, 'y': 0},
- },
- "records": []
- }
- embedding_model = ModelFactory.get_embedding_model(
- tenant_id=dataset.tenant_id,
- model_provider_name=dataset.embedding_model_provider,
- model_name=dataset.embedding_model
- )
- embeddings = CacheEmbedding(embedding_model)
- vector_index = VectorIndex(
- dataset=dataset,
- config=current_app.config,
- embeddings=embeddings
- )
- start = time.perf_counter()
- documents = vector_index.search(
- query,
- search_type='similarity_score_threshold',
- search_kwargs={
- 'k': 10
- }
- )
- end = time.perf_counter()
- logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
- dataset_query = DatasetQuery(
- dataset_id=dataset.id,
- content=query,
- source='hit_testing',
- created_by_role='account',
- created_by=account.id
- )
- db.session.add(dataset_query)
- db.session.commit()
- return cls.compact_retrieve_response(dataset, embeddings, query, documents)
- @classmethod
- def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: List[Document]):
- text_embeddings = [
- embeddings.embed_query(query)
- ]
- text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))
- tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)
- query_position = tsne_position_data.pop(0)
- i = 0
- records = []
- for document in documents:
- index_node_id = document.metadata['doc_id']
- segment = db.session.query(DocumentSegment).filter(
- DocumentSegment.dataset_id == dataset.id,
- DocumentSegment.enabled == True,
- DocumentSegment.status == 'completed',
- DocumentSegment.index_node_id == index_node_id
- ).first()
- if not segment:
- i += 1
- continue
- record = {
- "segment": segment,
- "score": document.metadata['score'],
- "tsne_position": tsne_position_data[i]
- }
- records.append(record)
- i += 1
- return {
- "query": {
- "content": query,
- "tsne_position": query_position,
- },
- "records": records
- }
- @classmethod
- def get_tsne_positions_from_embeddings(cls, embeddings: list):
- embedding_length = len(embeddings)
- if embedding_length <= 1:
- return [{'x': 0, 'y': 0}]
- concatenate_data = np.array(embeddings).reshape(embedding_length, -1)
- # concatenate_data = np.concatenate(embeddings)
- perplexity = embedding_length / 2 + 1
- if perplexity >= embedding_length:
- perplexity = max(embedding_length - 1, 1)
- tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)
- data_tsne = tsne.fit_transform(concatenate_data)
- tsne_position_data = []
- for i in range(len(data_tsne)):
- tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})
- return tsne_position_data
|