hit_testing_service.py 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136
  1. import logging
  2. import time
  3. from typing import List
  4. import numpy as np
  5. from flask import current_app
  6. from langchain.embeddings.base import Embeddings
  7. from langchain.schema import Document
  8. from sklearn.manifold import TSNE
  9. from core.embedding.cached_embedding import CacheEmbedding
  10. from core.index.vector_index.vector_index import VectorIndex
  11. from core.model_providers.model_factory import ModelFactory
  12. from extensions.ext_database import db
  13. from models.account import Account
  14. from models.dataset import Dataset, DocumentSegment, DatasetQuery
  15. class HitTestingService:
  16. @classmethod
  17. def retrieve(cls, dataset: Dataset, query: str, account: Account, limit: int = 10) -> dict:
  18. if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  19. return {
  20. "query": {
  21. "content": query,
  22. "tsne_position": {'x': 0, 'y': 0},
  23. },
  24. "records": []
  25. }
  26. embedding_model = ModelFactory.get_embedding_model(
  27. tenant_id=dataset.tenant_id,
  28. model_provider_name=dataset.embedding_model_provider,
  29. model_name=dataset.embedding_model
  30. )
  31. embeddings = CacheEmbedding(embedding_model)
  32. vector_index = VectorIndex(
  33. dataset=dataset,
  34. config=current_app.config,
  35. embeddings=embeddings
  36. )
  37. start = time.perf_counter()
  38. documents = vector_index.search(
  39. query,
  40. search_type='similarity_score_threshold',
  41. search_kwargs={
  42. 'k': 10
  43. }
  44. )
  45. end = time.perf_counter()
  46. logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
  47. dataset_query = DatasetQuery(
  48. dataset_id=dataset.id,
  49. content=query,
  50. source='hit_testing',
  51. created_by_role='account',
  52. created_by=account.id
  53. )
  54. db.session.add(dataset_query)
  55. db.session.commit()
  56. return cls.compact_retrieve_response(dataset, embeddings, query, documents)
  57. @classmethod
  58. def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: List[Document]):
  59. text_embeddings = [
  60. embeddings.embed_query(query)
  61. ]
  62. text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))
  63. tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)
  64. query_position = tsne_position_data.pop(0)
  65. i = 0
  66. records = []
  67. for document in documents:
  68. index_node_id = document.metadata['doc_id']
  69. segment = db.session.query(DocumentSegment).filter(
  70. DocumentSegment.dataset_id == dataset.id,
  71. DocumentSegment.enabled == True,
  72. DocumentSegment.status == 'completed',
  73. DocumentSegment.index_node_id == index_node_id
  74. ).first()
  75. if not segment:
  76. i += 1
  77. continue
  78. record = {
  79. "segment": segment,
  80. "score": document.metadata['score'],
  81. "tsne_position": tsne_position_data[i]
  82. }
  83. records.append(record)
  84. i += 1
  85. return {
  86. "query": {
  87. "content": query,
  88. "tsne_position": query_position,
  89. },
  90. "records": records
  91. }
  92. @classmethod
  93. def get_tsne_positions_from_embeddings(cls, embeddings: list):
  94. embedding_length = len(embeddings)
  95. if embedding_length <= 1:
  96. return [{'x': 0, 'y': 0}]
  97. concatenate_data = np.array(embeddings).reshape(embedding_length, -1)
  98. # concatenate_data = np.concatenate(embeddings)
  99. perplexity = embedding_length / 2 + 1
  100. if perplexity >= embedding_length:
  101. perplexity = max(embedding_length - 1, 1)
  102. tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)
  103. data_tsne = tsne.fit_transform(concatenate_data)
  104. tsne_position_data = []
  105. for i in range(len(data_tsne)):
  106. tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})
  107. return tsne_position_data