| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 | import osimport pytestfrom core.model_runtime.entities.text_embedding_entities import TextEmbeddingResultfrom core.model_runtime.errors.validate import CredentialsValidateFailedErrorfrom core.model_runtime.model_providers.ollama.text_embedding.text_embedding import OllamaEmbeddingModeldef test_validate_credentials():    model = OllamaEmbeddingModel()    with pytest.raises(CredentialsValidateFailedError):        model.validate_credentials(            model='mistral:text',            credentials={                'base_url': 'http://localhost:21434',                'mode': 'chat',                'context_size': 4096,            }        )    model.validate_credentials(        model='mistral:text',        credentials={            'base_url': os.environ.get('OLLAMA_BASE_URL'),            'mode': 'chat',            'context_size': 4096,        }    )def test_invoke_model():    model = OllamaEmbeddingModel()    result = model.invoke(        model='mistral:text',        credentials={            'base_url': os.environ.get('OLLAMA_BASE_URL'),            'mode': 'chat',            'context_size': 4096,        },        texts=[            "hello",            "world"        ],        user="abc-123"    )    assert isinstance(result, TextEmbeddingResult)    assert len(result.embeddings) == 2    assert result.usage.total_tokens == 2def test_get_num_tokens():    model = OllamaEmbeddingModel()    num_tokens = model.get_num_tokens(        model='mistral:text',        credentials={            'base_url': os.environ.get('OLLAMA_BASE_URL'),            'mode': 'chat',            'context_size': 4096,        },        texts=[            "hello",            "world"        ]    )    assert num_tokens == 2
 |