| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884 | # -*- coding:utf-8 -*-from datetime import datetimefrom typing import Listfrom flask import requestfrom flask_login import current_userfrom core.model_manager import ModelManagerfrom core.model_runtime.entities.model_entities import ModelTypefrom core.model_runtime.errors.invoke import InvokeAuthorizationErrorfrom libs.login import login_requiredfrom flask_restful import Resource, fields, marshal, marshal_with, reqparsefrom sqlalchemy import desc, ascfrom werkzeug.exceptions import NotFound, Forbiddenimport servicesfrom controllers.console import apifrom controllers.console.app.error import ProviderNotInitializeError, ProviderQuotaExceededError, \    ProviderModelCurrentlyNotSupportErrorfrom controllers.console.datasets.error import DocumentAlreadyFinishedError, InvalidActionError, DocumentIndexingError, \    InvalidMetadataError, ArchivedDocumentImmutableErrorfrom controllers.console.setup import setup_requiredfrom controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_checkfrom core.indexing_runner import IndexingRunnerfrom core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \    LLMBadRequestErrorfrom extensions.ext_redis import redis_clientfrom fields.document_fields import document_with_segments_fields, document_fields, \    dataset_and_document_fields, document_status_fieldsfrom extensions.ext_database import dbfrom models.dataset import DatasetProcessRule, Datasetfrom models.dataset import Document, DocumentSegmentfrom models.model import UploadFilefrom services.dataset_service import DocumentService, DatasetServicefrom tasks.add_document_to_index_task import add_document_to_index_taskfrom tasks.remove_document_from_index_task import remove_document_from_index_taskclass DocumentResource(Resource):    def get_document(self, dataset_id: str, document_id: str) -> Document:        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound('Dataset not found.')        try:            DatasetService.check_dataset_permission(dataset, current_user)        except services.errors.account.NoPermissionError as e:            raise Forbidden(str(e))        document = DocumentService.get_document(dataset_id, document_id)        if not document:            raise NotFound('Document not found.')        if document.tenant_id != current_user.current_tenant_id:            raise Forbidden('No permission.')        return document    def get_batch_documents(self, dataset_id: str, batch: str) -> List[Document]:        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound('Dataset not found.')        try:            DatasetService.check_dataset_permission(dataset, current_user)        except services.errors.account.NoPermissionError as e:            raise Forbidden(str(e))        documents = DocumentService.get_batch_documents(dataset_id, batch)        if not documents:            raise NotFound('Documents not found.')        return documentsclass GetProcessRuleApi(Resource):    @setup_required    @login_required    @account_initialization_required    def get(self):        req_data = request.args        document_id = req_data.get('document_id')                # get default rules        mode = DocumentService.DEFAULT_RULES['mode']        rules = DocumentService.DEFAULT_RULES['rules']        if document_id:            # get the latest process rule            document = Document.query.get_or_404(document_id)            dataset = DatasetService.get_dataset(document.dataset_id)            if not dataset:                raise NotFound('Dataset not found.')            try:                DatasetService.check_dataset_permission(dataset, current_user)            except services.errors.account.NoPermissionError as e:                raise Forbidden(str(e))            # get the latest process rule            dataset_process_rule = db.session.query(DatasetProcessRule). \                filter(DatasetProcessRule.dataset_id == document.dataset_id). \                order_by(DatasetProcessRule.created_at.desc()). \                limit(1). \                one_or_none()            if dataset_process_rule:                mode = dataset_process_rule.mode                rules = dataset_process_rule.rules_dict        return {            'mode': mode,            'rules': rules        }class DatasetDocumentListApi(Resource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id):        dataset_id = str(dataset_id)        page = request.args.get('page', default=1, type=int)        limit = request.args.get('limit', default=20, type=int)        search = request.args.get('keyword', default=None, type=str)        sort = request.args.get('sort', default='-created_at', type=str)        fetch = request.args.get('fetch', default=False, type=bool)        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound('Dataset not found.')        try:            DatasetService.check_dataset_permission(dataset, current_user)        except services.errors.account.NoPermissionError as e:            raise Forbidden(str(e))        query = Document.query.filter_by(            dataset_id=str(dataset_id), tenant_id=current_user.current_tenant_id)        if search:            search = f'%{search}%'            query = query.filter(Document.name.like(search))        if sort.startswith('-'):            sort_logic = desc            sort = sort[1:]        else:            sort_logic = asc        if sort == 'hit_count':            sub_query = db.select(DocumentSegment.document_id,                                  db.func.sum(DocumentSegment.hit_count).label("total_hit_count")) \                .group_by(DocumentSegment.document_id) \                .subquery()            query = query.outerjoin(sub_query, sub_query.c.document_id == Document.id) \                .order_by(sort_logic(db.func.coalesce(sub_query.c.total_hit_count, 0)))        elif sort == 'created_at':            query = query.order_by(sort_logic(Document.created_at))        else:            query = query.order_by(desc(Document.created_at))        paginated_documents = query.paginate(            page=page, per_page=limit, max_per_page=100, error_out=False)        documents = paginated_documents.items        if fetch:            for document in documents:                completed_segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None),                                                                  DocumentSegment.document_id == str(document.id),                                                                  DocumentSegment.status != 're_segment').count()                total_segments = DocumentSegment.query.filter(DocumentSegment.document_id == str(document.id),                                                              DocumentSegment.status != 're_segment').count()                document.completed_segments = completed_segments                document.total_segments = total_segments            data = marshal(documents, document_with_segments_fields)        else:            data = marshal(documents, document_fields)        response = {            'data': data,            'has_more': len(documents) == limit,            'limit': limit,            'total': paginated_documents.total,            'page': page        }        return response    documents_and_batch_fields = {        'documents': fields.List(fields.Nested(document_fields)),        'batch': fields.String    }    @setup_required    @login_required    @account_initialization_required    @marshal_with(documents_and_batch_fields)    @cloud_edition_billing_resource_check('vector_space')    def post(self, dataset_id):        dataset_id = str(dataset_id)        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound('Dataset not found.')        # The role of the current user in the ta table must be admin or owner        if current_user.current_tenant.current_role not in ['admin', 'owner']:            raise Forbidden()        try:            DatasetService.check_dataset_permission(dataset, current_user)        except services.errors.account.NoPermissionError as e:            raise Forbidden(str(e))        parser = reqparse.RequestParser()        parser.add_argument('indexing_technique', type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False,                            location='json')        parser.add_argument('data_source', type=dict, required=False, location='json')        parser.add_argument('process_rule', type=dict, required=False, location='json')        parser.add_argument('duplicate', type=bool, nullable=False, location='json')        parser.add_argument('original_document_id', type=str, required=False, location='json')        parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')        parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,                            location='json')        parser.add_argument('retrieval_model', type=dict, required=False, nullable=False,                            location='json')        args = parser.parse_args()        if not dataset.indexing_technique and not args['indexing_technique']:            raise ValueError('indexing_technique is required.')        # validate args        DocumentService.document_create_args_validate(args)        try:            documents, batch = DocumentService.save_document_with_dataset_id(dataset, args, current_user)        except ProviderTokenNotInitError as ex:            raise ProviderNotInitializeError(ex.description)        except QuotaExceededError:            raise ProviderQuotaExceededError()        except ModelCurrentlyNotSupportError:            raise ProviderModelCurrentlyNotSupportError()        return {            'documents': documents,            'batch': batch        }class DatasetInitApi(Resource):    @setup_required    @login_required    @account_initialization_required    @marshal_with(dataset_and_document_fields)    @cloud_edition_billing_resource_check('vector_space')    def post(self):        # The role of the current user in the ta table must be admin or owner        if current_user.current_tenant.current_role not in ['admin', 'owner']:            raise Forbidden()        parser = reqparse.RequestParser()        parser.add_argument('indexing_technique', type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, required=True,                            nullable=False, location='json')        parser.add_argument('data_source', type=dict, required=True, nullable=True, location='json')        parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')        parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')        parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,                            location='json')        parser.add_argument('retrieval_model', type=dict, required=False, nullable=False,                            location='json')        args = parser.parse_args()        if args['indexing_technique'] == 'high_quality':            try:                model_manager = ModelManager()                model_manager.get_default_model_instance(                    tenant_id=current_user.current_tenant_id,                    model_type=ModelType.TEXT_EMBEDDING                )            except InvokeAuthorizationError:                raise ProviderNotInitializeError(                    f"No Embedding Model available. Please configure a valid provider "                    f"in the Settings -> Model Provider.")            except ProviderTokenNotInitError as ex:                raise ProviderNotInitializeError(ex.description)        # validate args        DocumentService.document_create_args_validate(args)        try:            dataset, documents, batch = DocumentService.save_document_without_dataset_id(                tenant_id=current_user.current_tenant_id,                document_data=args,                account=current_user            )        except ProviderTokenNotInitError as ex:            raise ProviderNotInitializeError(ex.description)        except QuotaExceededError:            raise ProviderQuotaExceededError()        except ModelCurrentlyNotSupportError:            raise ProviderModelCurrentlyNotSupportError()        response = {            'dataset': dataset,            'documents': documents,            'batch': batch        }        return responseclass DocumentIndexingEstimateApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id, document_id):        dataset_id = str(dataset_id)        document_id = str(document_id)        document = self.get_document(dataset_id, document_id)        if document.indexing_status in ['completed', 'error']:            raise DocumentAlreadyFinishedError()        data_process_rule = document.dataset_process_rule        data_process_rule_dict = data_process_rule.to_dict()        response = {            "tokens": 0,            "total_price": 0,            "currency": "USD",            "total_segments": 0,            "preview": []        }        if document.data_source_type == 'upload_file':            data_source_info = document.data_source_info_dict            if data_source_info and 'upload_file_id' in data_source_info:                file_id = data_source_info['upload_file_id']                file = db.session.query(UploadFile).filter(                    UploadFile.tenant_id == document.tenant_id,                    UploadFile.id == file_id                ).first()                # raise error if file not found                if not file:                    raise NotFound('File not found.')                indexing_runner = IndexingRunner()                try:                    response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, [file],                                                                      data_process_rule_dict, None,                                                                      'English', dataset_id)                except LLMBadRequestError:                    raise ProviderNotInitializeError(                        f"No Embedding Model available. Please configure a valid provider "                        f"in the Settings -> Model Provider.")                except ProviderTokenNotInitError as ex:                    raise ProviderNotInitializeError(ex.description)        return responseclass DocumentBatchIndexingEstimateApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id, batch):        dataset_id = str(dataset_id)        batch = str(batch)        dataset = DatasetService.get_dataset(dataset_id)        if dataset is None:            raise NotFound("Dataset not found.")        documents = self.get_batch_documents(dataset_id, batch)        response = {            "tokens": 0,            "total_price": 0,            "currency": "USD",            "total_segments": 0,            "preview": []        }        if not documents:            return response        data_process_rule = documents[0].dataset_process_rule        data_process_rule_dict = data_process_rule.to_dict()        info_list = []        for document in documents:            if document.indexing_status in ['completed', 'error']:                raise DocumentAlreadyFinishedError()            data_source_info = document.data_source_info_dict            # format document files info            if data_source_info and 'upload_file_id' in data_source_info:                file_id = data_source_info['upload_file_id']                info_list.append(file_id)            # format document notion info            elif data_source_info and 'notion_workspace_id' in data_source_info and 'notion_page_id' in data_source_info:                pages = []                page = {                    'page_id': data_source_info['notion_page_id'],                    'type': data_source_info['type']                }                pages.append(page)                notion_info = {                    'workspace_id': data_source_info['notion_workspace_id'],                    'pages': pages                }                info_list.append(notion_info)        if dataset.data_source_type == 'upload_file':            file_details = db.session.query(UploadFile).filter(                UploadFile.tenant_id == current_user.current_tenant_id,                UploadFile.id.in_(info_list)            ).all()            if file_details is None:                raise NotFound("File not found.")            indexing_runner = IndexingRunner()            try:                response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,                                                                  data_process_rule_dict, None,                                                                  'English', dataset_id)            except LLMBadRequestError:                raise ProviderNotInitializeError(                    f"No Embedding Model available. Please configure a valid provider "                    f"in the Settings -> Model Provider.")            except ProviderTokenNotInitError as ex:                raise ProviderNotInitializeError(ex.description)        elif dataset.data_source_type == 'notion_import':            indexing_runner = IndexingRunner()            try:                response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,                                                                    info_list,                                                                    data_process_rule_dict,                                                                    None, 'English', dataset_id)            except LLMBadRequestError:                raise ProviderNotInitializeError(                    f"No Embedding Model available. Please configure a valid provider "                    f"in the Settings -> Model Provider.")            except ProviderTokenNotInitError as ex:                raise ProviderNotInitializeError(ex.description)        else:            raise ValueError('Data source type not support')        return responseclass DocumentBatchIndexingStatusApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id, batch):        dataset_id = str(dataset_id)        batch = str(batch)        documents = self.get_batch_documents(dataset_id, batch)        documents_status = []        for document in documents:            completed_segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None),                                                              DocumentSegment.document_id == str(document.id),                                                              DocumentSegment.status != 're_segment').count()            total_segments = DocumentSegment.query.filter(DocumentSegment.document_id == str(document.id),                                                          DocumentSegment.status != 're_segment').count()            document.completed_segments = completed_segments            document.total_segments = total_segments            if document.is_paused:                document.indexing_status = 'paused'            documents_status.append(marshal(document, document_status_fields))        data = {            'data': documents_status        }        return dataclass DocumentIndexingStatusApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id, document_id):        dataset_id = str(dataset_id)        document_id = str(document_id)        document = self.get_document(dataset_id, document_id)        completed_segments = DocumentSegment.query \            .filter(DocumentSegment.completed_at.isnot(None),                    DocumentSegment.document_id == str(document_id),                    DocumentSegment.status != 're_segment') \            .count()        total_segments = DocumentSegment.query \            .filter(DocumentSegment.document_id == str(document_id),                    DocumentSegment.status != 're_segment') \            .count()        document.completed_segments = completed_segments        document.total_segments = total_segments        if document.is_paused:            document.indexing_status = 'paused'        return marshal(document, document_status_fields)class DocumentDetailApi(DocumentResource):    METADATA_CHOICES = {'all', 'only', 'without'}    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id, document_id):        dataset_id = str(dataset_id)        document_id = str(document_id)        document = self.get_document(dataset_id, document_id)        metadata = request.args.get('metadata', 'all')        if metadata not in self.METADATA_CHOICES:            raise InvalidMetadataError(f'Invalid metadata value: {metadata}')        if metadata == 'only':            response = {                'id': document.id,                'doc_type': document.doc_type,                'doc_metadata': document.doc_metadata            }        elif metadata == 'without':            process_rules = DatasetService.get_process_rules(dataset_id)            data_source_info = document.data_source_detail_dict            response = {                'id': document.id,                'position': document.position,                'data_source_type': document.data_source_type,                'data_source_info': data_source_info,                'dataset_process_rule_id': document.dataset_process_rule_id,                'dataset_process_rule': process_rules,                'name': document.name,                'created_from': document.created_from,                'created_by': document.created_by,                'created_at': document.created_at.timestamp(),                'tokens': document.tokens,                'indexing_status': document.indexing_status,                'completed_at': int(document.completed_at.timestamp()) if document.completed_at else None,                'updated_at': int(document.updated_at.timestamp()) if document.updated_at else None,                'indexing_latency': document.indexing_latency,                'error': document.error,                'enabled': document.enabled,                'disabled_at': int(document.disabled_at.timestamp()) if document.disabled_at else None,                'disabled_by': document.disabled_by,                'archived': document.archived,                'segment_count': document.segment_count,                'average_segment_length': document.average_segment_length,                'hit_count': document.hit_count,                'display_status': document.display_status,                'doc_form': document.doc_form            }        else:            process_rules = DatasetService.get_process_rules(dataset_id)            data_source_info = document.data_source_detail_dict_()            response = {                'id': document.id,                'position': document.position,                'data_source_type': document.data_source_type,                'data_source_info': data_source_info,                'dataset_process_rule_id': document.dataset_process_rule_id,                'dataset_process_rule': process_rules,                'name': document.name,                'created_from': document.created_from,                'created_by': document.created_by,                'created_at': document.created_at.timestamp(),                'tokens': document.tokens,                'indexing_status': document.indexing_status,                'completed_at': int(document.completed_at.timestamp()) if document.completed_at else None,                'updated_at': int(document.updated_at.timestamp()) if document.updated_at else None,                'indexing_latency': document.indexing_latency,                'error': document.error,                'enabled': document.enabled,                'disabled_at': int(document.disabled_at.timestamp()) if document.disabled_at else None,                'disabled_by': document.disabled_by,                'archived': document.archived,                'doc_type': document.doc_type,                'doc_metadata': document.doc_metadata,                'segment_count': document.segment_count,                'average_segment_length': document.average_segment_length,                'hit_count': document.hit_count,                'display_status': document.display_status,                'doc_form': document.doc_form            }        return response, 200class DocumentProcessingApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def patch(self, dataset_id, document_id, action):        dataset_id = str(dataset_id)        document_id = str(document_id)        document = self.get_document(dataset_id, document_id)        # The role of the current user in the ta table must be admin or owner        if current_user.current_tenant.current_role not in ['admin', 'owner']:            raise Forbidden()        if action == "pause":            if document.indexing_status != "indexing":                raise InvalidActionError('Document not in indexing state.')            document.paused_by = current_user.id            document.paused_at = datetime.utcnow()            document.is_paused = True            db.session.commit()        elif action == "resume":            if document.indexing_status not in ["paused", "error"]:                raise InvalidActionError('Document not in paused or error state.')            document.paused_by = None            document.paused_at = None            document.is_paused = False            db.session.commit()        else:            raise InvalidActionError()        return {'result': 'success'}, 200class DocumentDeleteApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def delete(self, dataset_id, document_id):        dataset_id = str(dataset_id)        document_id = str(document_id)        dataset = DatasetService.get_dataset(dataset_id)        if dataset is None:            raise NotFound("Dataset not found.")        # check user's model setting        DatasetService.check_dataset_model_setting(dataset)        document = self.get_document(dataset_id, document_id)        try:            DocumentService.delete_document(document)        except services.errors.document.DocumentIndexingError:            raise DocumentIndexingError('Cannot delete document during indexing.')        return {'result': 'success'}, 204class DocumentMetadataApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def put(self, dataset_id, document_id):        dataset_id = str(dataset_id)        document_id = str(document_id)        document = self.get_document(dataset_id, document_id)        req_data = request.get_json()        doc_type = req_data.get('doc_type')        doc_metadata = req_data.get('doc_metadata')        # The role of the current user in the ta table must be admin or owner        if current_user.current_tenant.current_role not in ['admin', 'owner']:            raise Forbidden()        if doc_type is None or doc_metadata is None:            raise ValueError('Both doc_type and doc_metadata must be provided.')        if doc_type not in DocumentService.DOCUMENT_METADATA_SCHEMA:            raise ValueError('Invalid doc_type.')        if not isinstance(doc_metadata, dict):            raise ValueError('doc_metadata must be a dictionary.')        metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[doc_type]        document.doc_metadata = {}        if doc_type == 'others':            document.doc_metadata = doc_metadata        else:            for key, value_type in metadata_schema.items():                value = doc_metadata.get(key)                if value is not None and isinstance(value, value_type):                    document.doc_metadata[key] = value        document.doc_type = doc_type        document.updated_at = datetime.utcnow()        db.session.commit()        return {'result': 'success', 'message': 'Document metadata updated.'}, 200class DocumentStatusApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    @cloud_edition_billing_resource_check('vector_space')    def patch(self, dataset_id, document_id, action):        dataset_id = str(dataset_id)        document_id = str(document_id)        dataset = DatasetService.get_dataset(dataset_id)        if dataset is None:            raise NotFound("Dataset not found.")        # check user's model setting        DatasetService.check_dataset_model_setting(dataset)        document = self.get_document(dataset_id, document_id)        # The role of the current user in the ta table must be admin or owner        if current_user.current_tenant.current_role not in ['admin', 'owner']:            raise Forbidden()        indexing_cache_key = 'document_{}_indexing'.format(document.id)        cache_result = redis_client.get(indexing_cache_key)        if cache_result is not None:            raise InvalidActionError("Document is being indexed, please try again later")        if action == "enable":            if document.enabled:                raise InvalidActionError('Document already enabled.')            document.enabled = True            document.disabled_at = None            document.disabled_by = None            document.updated_at = datetime.utcnow()            db.session.commit()            # Set cache to prevent indexing the same document multiple times            redis_client.setex(indexing_cache_key, 600, 1)            add_document_to_index_task.delay(document_id)            return {'result': 'success'}, 200        elif action == "disable":            if not document.completed_at or document.indexing_status != 'completed':                raise InvalidActionError('Document is not completed.')            if not document.enabled:                raise InvalidActionError('Document already disabled.')            document.enabled = False            document.disabled_at = datetime.utcnow()            document.disabled_by = current_user.id            document.updated_at = datetime.utcnow()            db.session.commit()            # Set cache to prevent indexing the same document multiple times            redis_client.setex(indexing_cache_key, 600, 1)            remove_document_from_index_task.delay(document_id)            return {'result': 'success'}, 200        elif action == "archive":            if document.archived:                raise InvalidActionError('Document already archived.')            document.archived = True            document.archived_at = datetime.utcnow()            document.archived_by = current_user.id            document.updated_at = datetime.utcnow()            db.session.commit()            if document.enabled:                # Set cache to prevent indexing the same document multiple times                redis_client.setex(indexing_cache_key, 600, 1)                remove_document_from_index_task.delay(document_id)            return {'result': 'success'}, 200        elif action == "un_archive":            if not document.archived:                raise InvalidActionError('Document is not archived.')            document.archived = False            document.archived_at = None            document.archived_by = None            document.updated_at = datetime.utcnow()            db.session.commit()            # Set cache to prevent indexing the same document multiple times            redis_client.setex(indexing_cache_key, 600, 1)            add_document_to_index_task.delay(document_id)            return {'result': 'success'}, 200        else:            raise InvalidActionError()class DocumentPauseApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def patch(self, dataset_id, document_id):        """pause document."""        dataset_id = str(dataset_id)        document_id = str(document_id)        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound('Dataset not found.')        document = DocumentService.get_document(dataset.id, document_id)        # 404 if document not found        if document is None:            raise NotFound("Document Not Exists.")        # 403 if document is archived        if DocumentService.check_archived(document):            raise ArchivedDocumentImmutableError()        try:            # pause document            DocumentService.pause_document(document)        except services.errors.document.DocumentIndexingError:            raise DocumentIndexingError('Cannot pause completed document.')        return {'result': 'success'}, 204class DocumentRecoverApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def patch(self, dataset_id, document_id):        """recover document."""        dataset_id = str(dataset_id)        document_id = str(document_id)        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound('Dataset not found.')        document = DocumentService.get_document(dataset.id, document_id)        # 404 if document not found        if document is None:            raise NotFound("Document Not Exists.")        # 403 if document is archived        if DocumentService.check_archived(document):            raise ArchivedDocumentImmutableError()        try:            # pause document            DocumentService.recover_document(document)        except services.errors.document.DocumentIndexingError:            raise DocumentIndexingError('Document is not in paused status.')        return {'result': 'success'}, 204api.add_resource(GetProcessRuleApi, '/datasets/process-rule')api.add_resource(DatasetDocumentListApi,                 '/datasets/<uuid:dataset_id>/documents')api.add_resource(DatasetInitApi,                 '/datasets/init')api.add_resource(DocumentIndexingEstimateApi,                 '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-estimate')api.add_resource(DocumentBatchIndexingEstimateApi,                 '/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-estimate')api.add_resource(DocumentBatchIndexingStatusApi,                 '/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-status')api.add_resource(DocumentIndexingStatusApi,                 '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-status')api.add_resource(DocumentDetailApi,                 '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>')api.add_resource(DocumentProcessingApi,                 '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/<string:action>')api.add_resource(DocumentDeleteApi,                 '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>')api.add_resource(DocumentMetadataApi,                 '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/metadata')api.add_resource(DocumentStatusApi,                 '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/status/<string:action>')api.add_resource(DocumentPauseApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/pause')api.add_resource(DocumentRecoverApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/resume')
 |