orchestrator_rule_parser.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. import math
  2. from typing import Optional
  3. from langchain import WikipediaAPIWrapper
  4. from langchain.callbacks.manager import Callbacks
  5. from langchain.memory.chat_memory import BaseChatMemory
  6. from langchain.tools import BaseTool, Tool, WikipediaQueryRun
  7. from pydantic import BaseModel, Field
  8. from core.agent.agent_executor import AgentExecutor, PlanningStrategy, AgentConfiguration
  9. from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
  10. from core.callback_handler.dataset_tool_callback_handler import DatasetToolCallbackHandler
  11. from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
  12. from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
  13. from core.chain.sensitive_word_avoidance_chain import SensitiveWordAvoidanceChain
  14. from core.conversation_message_task import ConversationMessageTask
  15. from core.model_providers.error import ProviderTokenNotInitError
  16. from core.model_providers.model_factory import ModelFactory
  17. from core.model_providers.models.entity.model_params import ModelKwargs, ModelMode
  18. from core.model_providers.models.llm.base import BaseLLM
  19. from core.tool.current_datetime_tool import DatetimeTool
  20. from core.tool.dataset_retriever_tool import DatasetRetrieverTool
  21. from core.tool.provider.serpapi_provider import SerpAPIToolProvider
  22. from core.tool.serpapi_wrapper import OptimizedSerpAPIWrapper, OptimizedSerpAPIInput
  23. from core.tool.web_reader_tool import WebReaderTool
  24. from extensions.ext_database import db
  25. from models.dataset import Dataset, DatasetProcessRule
  26. from models.model import AppModelConfig
  27. class OrchestratorRuleParser:
  28. """Parse the orchestrator rule to entities."""
  29. def __init__(self, tenant_id: str, app_model_config: AppModelConfig):
  30. self.tenant_id = tenant_id
  31. self.app_model_config = app_model_config
  32. def to_agent_executor(self, conversation_message_task: ConversationMessageTask, memory: Optional[BaseChatMemory],
  33. rest_tokens: int, chain_callback: MainChainGatherCallbackHandler,
  34. return_resource: bool = False, retriever_from: str = 'dev') -> Optional[AgentExecutor]:
  35. if not self.app_model_config.agent_mode_dict:
  36. return None
  37. agent_mode_config = self.app_model_config.agent_mode_dict
  38. model_dict = self.app_model_config.model_dict
  39. chain = None
  40. if agent_mode_config and agent_mode_config.get('enabled'):
  41. tool_configs = agent_mode_config.get('tools', [])
  42. agent_provider_name = model_dict.get('provider', 'openai')
  43. agent_model_name = model_dict.get('name', 'gpt-4')
  44. agent_model_instance = ModelFactory.get_text_generation_model(
  45. tenant_id=self.tenant_id,
  46. model_provider_name=agent_provider_name,
  47. model_name=agent_model_name,
  48. model_kwargs=ModelKwargs(
  49. temperature=0.2,
  50. top_p=0.3,
  51. max_tokens=1500
  52. )
  53. )
  54. # add agent callback to record agent thoughts
  55. agent_callback = AgentLoopGatherCallbackHandler(
  56. model_instant=agent_model_instance,
  57. conversation_message_task=conversation_message_task
  58. )
  59. chain_callback.agent_callback = agent_callback
  60. agent_model_instance.add_callbacks([agent_callback])
  61. planning_strategy = PlanningStrategy(agent_mode_config.get('strategy', 'router'))
  62. # only OpenAI chat model (include Azure) support function call, use ReACT instead
  63. if agent_model_instance.model_mode != ModelMode.CHAT \
  64. or agent_model_instance.model_provider.provider_name not in ['openai', 'azure_openai']:
  65. if planning_strategy in [PlanningStrategy.FUNCTION_CALL, PlanningStrategy.MULTI_FUNCTION_CALL]:
  66. planning_strategy = PlanningStrategy.REACT
  67. elif planning_strategy == PlanningStrategy.ROUTER:
  68. planning_strategy = PlanningStrategy.REACT_ROUTER
  69. try:
  70. summary_model_instance = ModelFactory.get_text_generation_model(
  71. tenant_id=self.tenant_id,
  72. model_provider_name=agent_provider_name,
  73. model_name=agent_model_name,
  74. model_kwargs=ModelKwargs(
  75. temperature=0,
  76. max_tokens=500
  77. ),
  78. deduct_quota=False
  79. )
  80. except ProviderTokenNotInitError as e:
  81. summary_model_instance = None
  82. tools = self.to_tools(
  83. agent_model_instance=agent_model_instance,
  84. tool_configs=tool_configs,
  85. conversation_message_task=conversation_message_task,
  86. rest_tokens=rest_tokens,
  87. callbacks=[agent_callback, DifyStdOutCallbackHandler()],
  88. return_resource=return_resource,
  89. retriever_from=retriever_from
  90. )
  91. if len(tools) == 0:
  92. return None
  93. agent_configuration = AgentConfiguration(
  94. strategy=planning_strategy,
  95. model_instance=agent_model_instance,
  96. tools=tools,
  97. summary_model_instance=summary_model_instance,
  98. memory=memory,
  99. callbacks=[chain_callback, agent_callback],
  100. max_iterations=10,
  101. max_execution_time=400.0,
  102. early_stopping_method="generate"
  103. )
  104. return AgentExecutor(agent_configuration)
  105. return chain
  106. def to_sensitive_word_avoidance_chain(self, callbacks: Callbacks = None, **kwargs) \
  107. -> Optional[SensitiveWordAvoidanceChain]:
  108. """
  109. Convert app sensitive word avoidance config to chain
  110. :param kwargs:
  111. :return:
  112. """
  113. if not self.app_model_config.sensitive_word_avoidance_dict:
  114. return None
  115. sensitive_word_avoidance_config = self.app_model_config.sensitive_word_avoidance_dict
  116. sensitive_words = sensitive_word_avoidance_config.get("words", "")
  117. if sensitive_word_avoidance_config.get("enabled", False) and sensitive_words:
  118. return SensitiveWordAvoidanceChain(
  119. sensitive_words=sensitive_words.split(","),
  120. canned_response=sensitive_word_avoidance_config.get("canned_response", ''),
  121. output_key="sensitive_word_avoidance_output",
  122. callbacks=callbacks,
  123. **kwargs
  124. )
  125. return None
  126. def to_tools(self, agent_model_instance: BaseLLM, tool_configs: list,
  127. conversation_message_task: ConversationMessageTask,
  128. rest_tokens: int, callbacks: Callbacks = None, return_resource: bool = False,
  129. retriever_from: str = 'dev') -> list[BaseTool]:
  130. """
  131. Convert app agent tool configs to tools
  132. :param agent_model_instance:
  133. :param rest_tokens:
  134. :param tool_configs: app agent tool configs
  135. :param conversation_message_task:
  136. :param callbacks:
  137. :param return_resource:
  138. :param retriever_from:
  139. :return:
  140. """
  141. tools = []
  142. for tool_config in tool_configs:
  143. tool_type = list(tool_config.keys())[0]
  144. tool_val = list(tool_config.values())[0]
  145. if not tool_val.get("enabled") or tool_val.get("enabled") is not True:
  146. continue
  147. tool = None
  148. if tool_type == "dataset":
  149. tool = self.to_dataset_retriever_tool(tool_val, conversation_message_task, rest_tokens, return_resource, retriever_from)
  150. elif tool_type == "web_reader":
  151. tool = self.to_web_reader_tool(agent_model_instance)
  152. elif tool_type == "google_search":
  153. tool = self.to_google_search_tool()
  154. elif tool_type == "wikipedia":
  155. tool = self.to_wikipedia_tool()
  156. elif tool_type == "current_datetime":
  157. tool = self.to_current_datetime_tool()
  158. if tool:
  159. tool.callbacks.extend(callbacks)
  160. tools.append(tool)
  161. return tools
  162. def to_dataset_retriever_tool(self, tool_config: dict, conversation_message_task: ConversationMessageTask,
  163. rest_tokens: int, return_resource: bool = False, retriever_from: str = 'dev') \
  164. -> Optional[BaseTool]:
  165. """
  166. A dataset tool is a tool that can be used to retrieve information from a dataset
  167. :param rest_tokens:
  168. :param tool_config:
  169. :param conversation_message_task:
  170. :param return_resource:
  171. :param retriever_from:
  172. :return:
  173. """
  174. # get dataset from dataset id
  175. dataset = db.session.query(Dataset).filter(
  176. Dataset.tenant_id == self.tenant_id,
  177. Dataset.id == tool_config.get("id")
  178. ).first()
  179. if not dataset:
  180. return None
  181. if dataset and dataset.available_document_count == 0 and dataset.available_document_count == 0:
  182. return None
  183. k = self._dynamic_calc_retrieve_k(dataset, rest_tokens)
  184. tool = DatasetRetrieverTool.from_dataset(
  185. dataset=dataset,
  186. k=k,
  187. callbacks=[DatasetToolCallbackHandler(conversation_message_task)],
  188. conversation_message_task=conversation_message_task,
  189. return_resource=return_resource,
  190. retriever_from=retriever_from
  191. )
  192. return tool
  193. def to_web_reader_tool(self, agent_model_instance: BaseLLM) -> Optional[BaseTool]:
  194. """
  195. A tool for reading web pages
  196. :return:
  197. """
  198. try:
  199. summary_model_instance = ModelFactory.get_text_generation_model(
  200. tenant_id=self.tenant_id,
  201. model_provider_name=agent_model_instance.model_provider.provider_name,
  202. model_name=agent_model_instance.name,
  203. model_kwargs=ModelKwargs(
  204. temperature=0,
  205. max_tokens=500
  206. ),
  207. deduct_quota=False
  208. )
  209. except ProviderTokenNotInitError:
  210. summary_model_instance = None
  211. tool = WebReaderTool(
  212. llm=summary_model_instance.client if summary_model_instance else None,
  213. max_chunk_length=4000,
  214. continue_reading=True,
  215. callbacks=[DifyStdOutCallbackHandler()]
  216. )
  217. return tool
  218. def to_google_search_tool(self) -> Optional[BaseTool]:
  219. tool_provider = SerpAPIToolProvider(tenant_id=self.tenant_id)
  220. func_kwargs = tool_provider.credentials_to_func_kwargs()
  221. if not func_kwargs:
  222. return None
  223. tool = Tool(
  224. name="google_search",
  225. description="A tool for performing a Google search and extracting snippets and webpages "
  226. "when you need to search for something you don't know or when your information "
  227. "is not up to date. "
  228. "Input should be a search query.",
  229. func=OptimizedSerpAPIWrapper(**func_kwargs).run,
  230. args_schema=OptimizedSerpAPIInput,
  231. callbacks=[DifyStdOutCallbackHandler()]
  232. )
  233. return tool
  234. def to_current_datetime_tool(self) -> Optional[BaseTool]:
  235. tool = DatetimeTool(
  236. callbacks=[DifyStdOutCallbackHandler()]
  237. )
  238. return tool
  239. def to_wikipedia_tool(self) -> Optional[BaseTool]:
  240. class WikipediaInput(BaseModel):
  241. query: str = Field(..., description="search query.")
  242. return WikipediaQueryRun(
  243. name="wikipedia",
  244. api_wrapper=WikipediaAPIWrapper(doc_content_chars_max=4000),
  245. args_schema=WikipediaInput,
  246. callbacks=[DifyStdOutCallbackHandler()]
  247. )
  248. @classmethod
  249. def _dynamic_calc_retrieve_k(cls, dataset: Dataset, rest_tokens: int) -> int:
  250. DEFAULT_K = 2
  251. CONTEXT_TOKENS_PERCENT = 0.3
  252. MAX_K = 10
  253. if rest_tokens == -1:
  254. return DEFAULT_K
  255. processing_rule = dataset.latest_process_rule
  256. if not processing_rule:
  257. return DEFAULT_K
  258. if processing_rule.mode == "custom":
  259. rules = processing_rule.rules_dict
  260. if not rules:
  261. return DEFAULT_K
  262. segmentation = rules["segmentation"]
  263. segment_max_tokens = segmentation["max_tokens"]
  264. else:
  265. segment_max_tokens = DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens']
  266. # when rest_tokens is less than default context tokens
  267. if rest_tokens < segment_max_tokens * DEFAULT_K:
  268. return rest_tokens // segment_max_tokens
  269. context_limit_tokens = math.floor(rest_tokens * CONTEXT_TOKENS_PERCENT)
  270. # when context_limit_tokens is less than default context tokens, use default_k
  271. if context_limit_tokens <= segment_max_tokens * DEFAULT_K:
  272. return DEFAULT_K
  273. # Expand the k value when there's still some room left in the 30% rest tokens space, but less than the MAX_K
  274. return min(context_limit_tokens // segment_max_tokens, MAX_K)