hit_testing_service.py 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. import logging
  2. import time
  3. from core.rag.datasource.retrieval_service import RetrievalService
  4. from core.rag.models.document import Document
  5. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  6. from extensions.ext_database import db
  7. from models.account import Account
  8. from models.dataset import Dataset, DatasetQuery, DocumentSegment
  9. default_retrieval_model = {
  10. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  11. "reranking_enable": False,
  12. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  13. "top_k": 2,
  14. "score_threshold_enabled": False,
  15. }
  16. class HitTestingService:
  17. @classmethod
  18. def retrieve(
  19. cls,
  20. dataset: Dataset,
  21. query: str,
  22. account: Account,
  23. retrieval_model: dict,
  24. external_retrieval_model: dict,
  25. limit: int = 10,
  26. ) -> dict:
  27. if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  28. return {
  29. "query": {
  30. "content": query,
  31. "tsne_position": {"x": 0, "y": 0},
  32. },
  33. "records": [],
  34. }
  35. start = time.perf_counter()
  36. # get retrieval model , if the model is not setting , using default
  37. if not retrieval_model:
  38. retrieval_model = dataset.retrieval_model or default_retrieval_model
  39. all_documents = RetrievalService.retrieve(
  40. retrieval_method=retrieval_model.get("search_method", "semantic_search"),
  41. dataset_id=dataset.id,
  42. query=cls.escape_query_for_search(query),
  43. top_k=retrieval_model.get("top_k", 2),
  44. score_threshold=retrieval_model.get("score_threshold", 0.0)
  45. if retrieval_model["score_threshold_enabled"]
  46. else 0.0,
  47. reranking_model=retrieval_model.get("reranking_model", None)
  48. if retrieval_model["reranking_enable"]
  49. else None,
  50. reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
  51. weights=retrieval_model.get("weights", None),
  52. )
  53. end = time.perf_counter()
  54. logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
  55. dataset_query = DatasetQuery(
  56. dataset_id=dataset.id, content=query, source="hit_testing", created_by_role="account", created_by=account.id
  57. )
  58. db.session.add(dataset_query)
  59. db.session.commit()
  60. return cls.compact_retrieve_response(dataset, query, all_documents)
  61. @classmethod
  62. def external_retrieve(
  63. cls,
  64. dataset: Dataset,
  65. query: str,
  66. account: Account,
  67. external_retrieval_model: dict,
  68. ) -> dict:
  69. if dataset.provider != "external":
  70. return {
  71. "query": {"content": query},
  72. "records": [],
  73. }
  74. start = time.perf_counter()
  75. all_documents = RetrievalService.external_retrieve(
  76. dataset_id=dataset.id,
  77. query=cls.escape_query_for_search(query),
  78. external_retrieval_model=external_retrieval_model,
  79. )
  80. end = time.perf_counter()
  81. logging.debug(f"External knowledge hit testing retrieve in {end - start:0.4f} seconds")
  82. dataset_query = DatasetQuery(
  83. dataset_id=dataset.id, content=query, source="hit_testing", created_by_role="account", created_by=account.id
  84. )
  85. db.session.add(dataset_query)
  86. db.session.commit()
  87. return cls.compact_external_retrieve_response(dataset, query, all_documents)
  88. @classmethod
  89. def compact_retrieve_response(cls, dataset: Dataset, query: str, documents: list[Document]):
  90. records = []
  91. for document in documents:
  92. index_node_id = document.metadata["doc_id"]
  93. segment = (
  94. db.session.query(DocumentSegment)
  95. .filter(
  96. DocumentSegment.dataset_id == dataset.id,
  97. DocumentSegment.enabled == True,
  98. DocumentSegment.status == "completed",
  99. DocumentSegment.index_node_id == index_node_id,
  100. )
  101. .first()
  102. )
  103. if not segment:
  104. continue
  105. record = {
  106. "segment": segment,
  107. "score": document.metadata.get("score", None),
  108. }
  109. records.append(record)
  110. return {
  111. "query": {
  112. "content": query,
  113. },
  114. "records": records,
  115. }
  116. @classmethod
  117. def compact_external_retrieve_response(cls, dataset: Dataset, query: str, documents: list):
  118. records = []
  119. if dataset.provider == "external":
  120. for document in documents:
  121. record = {
  122. "content": document.get("content", None),
  123. "title": document.get("title", None),
  124. "score": document.get("score", None),
  125. "metadata": document.get("metadata", None),
  126. }
  127. records.append(record)
  128. return {
  129. "query": {
  130. "content": query,
  131. },
  132. "records": records,
  133. }
  134. @classmethod
  135. def hit_testing_args_check(cls, args):
  136. query = args["query"]
  137. if not query or len(query) > 250:
  138. raise ValueError("Query is required and cannot exceed 250 characters")
  139. @staticmethod
  140. def escape_query_for_search(query: str) -> str:
  141. return query.replace('"', '\\"')