| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 | import osimport pytestfrom core.model_runtime.entities.text_embedding_entities import TextEmbeddingResultfrom core.model_runtime.errors.validate import CredentialsValidateFailedErrorfrom core.model_runtime.model_providers.replicate.text_embedding.text_embedding import ReplicateEmbeddingModeldef test_validate_credentials_one():    model = ReplicateEmbeddingModel()    with pytest.raises(CredentialsValidateFailedError):        model.validate_credentials(            model='replicate/all-mpnet-base-v2',            credentials={                'replicate_api_token': 'invalid_key',                'model_version': 'b6b7585c9640cd7a9572c6e129c9549d79c9c31f0d3fdce7baac7c67ca38f305'            }        )    model.validate_credentials(        model='replicate/all-mpnet-base-v2',        credentials={            'replicate_api_token': os.environ.get('REPLICATE_API_KEY'),            'model_version': 'b6b7585c9640cd7a9572c6e129c9549d79c9c31f0d3fdce7baac7c67ca38f305'        }    )def test_validate_credentials_two():    model = ReplicateEmbeddingModel()    with pytest.raises(CredentialsValidateFailedError):        model.validate_credentials(            model='nateraw/bge-large-en-v1.5',            credentials={                'replicate_api_token': 'invalid_key',                'model_version': '9cf9f015a9cb9c61d1a2610659cdac4a4ca222f2d3707a68517b18c198a9add1'            }        )    model.validate_credentials(        model='nateraw/bge-large-en-v1.5',        credentials={            'replicate_api_token': os.environ.get('REPLICATE_API_KEY'),            'model_version': '9cf9f015a9cb9c61d1a2610659cdac4a4ca222f2d3707a68517b18c198a9add1'        }    )def test_invoke_model_one():    model = ReplicateEmbeddingModel()    result = model.invoke(        model='nateraw/bge-large-en-v1.5',        credentials={            'replicate_api_token': os.environ.get('REPLICATE_API_KEY'),            'model_version': '9cf9f015a9cb9c61d1a2610659cdac4a4ca222f2d3707a68517b18c198a9add1'        },        texts=[            "hello",            "world"        ],        user="abc-123"    )    assert isinstance(result, TextEmbeddingResult)    assert len(result.embeddings) == 2    assert result.usage.total_tokens == 2def test_invoke_model_two():    model = ReplicateEmbeddingModel()    result = model.invoke(        model='andreasjansson/clip-features',        credentials={            'replicate_api_token': os.environ.get('REPLICATE_API_KEY'),            'model_version': '75b33f253f7714a281ad3e9b28f63e3232d583716ef6718f2e46641077ea040a'        },        texts=[            "hello",            "world"        ],        user="abc-123"    )    assert isinstance(result, TextEmbeddingResult)    assert len(result.embeddings) == 2    assert result.usage.total_tokens == 2def test_invoke_model_three():    model = ReplicateEmbeddingModel()    result = model.invoke(        model='replicate/all-mpnet-base-v2',        credentials={            'replicate_api_token': os.environ.get('REPLICATE_API_KEY'),            'model_version': 'b6b7585c9640cd7a9572c6e129c9549d79c9c31f0d3fdce7baac7c67ca38f305'        },        texts=[            "hello",            "world"        ],        user="abc-123"    )    assert isinstance(result, TextEmbeddingResult)    assert len(result.embeddings) == 2    assert result.usage.total_tokens == 2def test_invoke_model_four():    model = ReplicateEmbeddingModel()    result = model.invoke(        model='nateraw/jina-embeddings-v2-base-en',        credentials={            'replicate_api_token': os.environ.get('REPLICATE_API_KEY'),            'model_version': 'f8367a1c072ba2bc28af549d1faeacfe9b88b3f0e475add7a75091dac507f79e'        },        texts=[            "hello",            "world"        ],        user="abc-123"    )    assert isinstance(result, TextEmbeddingResult)    assert len(result.embeddings) == 2    assert result.usage.total_tokens == 2def test_get_num_tokens():    model = ReplicateEmbeddingModel()    num_tokens = model.get_num_tokens(        model='nateraw/jina-embeddings-v2-base-en',        credentials={            'replicate_api_token': os.environ.get('REPLICATE_API_KEY'),            'model_version': 'f8367a1c072ba2bc28af549d1faeacfe9b88b3f0e475add7a75091dac507f79e'        },        texts=[            "hello",            "world"        ]    )    assert num_tokens == 2
 |