| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796 | 
							- import datetime
 
- import json
 
- import math
 
- import random
 
- import string
 
- import threading
 
- import time
 
- import uuid
 
- import click
 
- import qdrant_client
 
- from qdrant_client.http.models import TextIndexParams, TextIndexType, TokenizerType
 
- from tqdm import tqdm
 
- from flask import current_app, Flask
 
- from werkzeug.exceptions import NotFound
 
- from core.embedding.cached_embedding import CacheEmbedding
 
- from core.index.index import IndexBuilder
 
- from core.model_manager import ModelManager
 
- from core.model_runtime.entities.model_entities import ModelType
 
- from libs.password import password_pattern, valid_password, hash_password
 
- from libs.helper import email as email_validate
 
- from extensions.ext_database import db
 
- from libs.rsa import generate_key_pair
 
- from models.account import InvitationCode, Tenant, TenantAccountJoin
 
- from models.dataset import Dataset, DatasetQuery, Document, DatasetCollectionBinding
 
- from models.model import Account, AppModelConfig, App, MessageAnnotation, Message
 
- import secrets
 
- import base64
 
- from models.provider import Provider, ProviderType, ProviderQuotaType, ProviderModel
 
- @click.command('reset-password', help='Reset the account password.')
 
- @click.option('--email', prompt=True, help='The email address of the account whose password you need to reset')
 
- @click.option('--new-password', prompt=True, help='the new password.')
 
- @click.option('--password-confirm', prompt=True, help='the new password confirm.')
 
- def reset_password(email, new_password, password_confirm):
 
-     if str(new_password).strip() != str(password_confirm).strip():
 
-         click.echo(click.style('sorry. The two passwords do not match.', fg='red'))
 
-         return
 
-     account = db.session.query(Account). \
 
-         filter(Account.email == email). \
 
-         one_or_none()
 
-     if not account:
 
-         click.echo(click.style('sorry. the account: [{}] not exist .'.format(email), fg='red'))
 
-         return
 
-     try:
 
-         valid_password(new_password)
 
-     except:
 
-         click.echo(
 
-             click.style('sorry. The passwords must match {} '.format(password_pattern), fg='red'))
 
-         return
 
-     # generate password salt
 
-     salt = secrets.token_bytes(16)
 
-     base64_salt = base64.b64encode(salt).decode()
 
-     # encrypt password with salt
 
-     password_hashed = hash_password(new_password, salt)
 
-     base64_password_hashed = base64.b64encode(password_hashed).decode()
 
-     account.password = base64_password_hashed
 
-     account.password_salt = base64_salt
 
-     db.session.commit()
 
-     click.echo(click.style('Congratulations!, password has been reset.', fg='green'))
 
- @click.command('reset-email', help='Reset the account email.')
 
- @click.option('--email', prompt=True, help='The old email address of the account whose email you need to reset')
 
- @click.option('--new-email', prompt=True, help='the new email.')
 
- @click.option('--email-confirm', prompt=True, help='the new email confirm.')
 
- def reset_email(email, new_email, email_confirm):
 
-     if str(new_email).strip() != str(email_confirm).strip():
 
-         click.echo(click.style('Sorry, new email and confirm email do not match.', fg='red'))
 
-         return
 
-     account = db.session.query(Account). \
 
-         filter(Account.email == email). \
 
-         one_or_none()
 
-     if not account:
 
-         click.echo(click.style('sorry. the account: [{}] not exist .'.format(email), fg='red'))
 
-         return
 
-     try:
 
-         email_validate(new_email)
 
-     except:
 
-         click.echo(
 
-             click.style('sorry. {} is not a valid email. '.format(email), fg='red'))
 
-         return
 
-     account.email = new_email
 
-     db.session.commit()
 
-     click.echo(click.style('Congratulations!, email has been reset.', fg='green'))
 
- @click.command('reset-encrypt-key-pair', help='Reset the asymmetric key pair of workspace for encrypt LLM credentials. '
 
-                                               'After the reset, all LLM credentials will become invalid, '
 
-                                               'requiring re-entry.'
 
-                                               'Only support SELF_HOSTED mode.')
 
- @click.confirmation_option(prompt=click.style('Are you sure you want to reset encrypt key pair?'
 
-                                               ' this operation cannot be rolled back!', fg='red'))
 
- def reset_encrypt_key_pair():
 
-     if current_app.config['EDITION'] != 'SELF_HOSTED':
 
-         click.echo(click.style('Sorry, only support SELF_HOSTED mode.', fg='red'))
 
-         return
 
-     tenant = db.session.query(Tenant).first()
 
-     if not tenant:
 
-         click.echo(click.style('Sorry, no workspace found. Please enter /install to initialize.', fg='red'))
 
-         return
 
-     tenant.encrypt_public_key = generate_key_pair(tenant.id)
 
-     db.session.query(Provider).filter(Provider.provider_type == 'custom').delete()
 
-     db.session.query(ProviderModel).delete()
 
-     db.session.commit()
 
-     click.echo(click.style('Congratulations! '
 
-                            'the asymmetric key pair of workspace {} has been reset.'.format(tenant.id), fg='green'))
 
- @click.command('generate-invitation-codes', help='Generate invitation codes.')
 
- @click.option('--batch', help='The batch of invitation codes.')
 
- @click.option('--count', prompt=True, help='Invitation codes count.')
 
- def generate_invitation_codes(batch, count):
 
-     if not batch:
 
-         now = datetime.datetime.now()
 
-         batch = now.strftime('%Y%m%d%H%M%S')
 
-     if not count or int(count) <= 0:
 
-         click.echo(click.style('sorry. the count must be greater than 0.', fg='red'))
 
-         return
 
-     count = int(count)
 
-     click.echo('Start generate {} invitation codes for batch {}.'.format(count, batch))
 
-     codes = ''
 
-     for i in range(count):
 
-         code = generate_invitation_code()
 
-         invitation_code = InvitationCode(
 
-             code=code,
 
-             batch=batch
 
-         )
 
-         db.session.add(invitation_code)
 
-         click.echo(code)
 
-         codes += code + "\n"
 
-     db.session.commit()
 
-     filename = 'storage/invitation-codes-{}.txt'.format(batch)
 
-     with open(filename, 'w') as f:
 
-         f.write(codes)
 
-     click.echo(click.style(
 
-         'Congratulations! Generated {} invitation codes for batch {} and saved to the file \'{}\''.format(count, batch,
 
-                                                                                                           filename),
 
-         fg='green'))
 
- def generate_invitation_code():
 
-     code = generate_upper_string()
 
-     while db.session.query(InvitationCode).filter(InvitationCode.code == code).count() > 0:
 
-         code = generate_upper_string()
 
-     return code
 
- def generate_upper_string():
 
-     letters_digits = string.ascii_uppercase + string.digits
 
-     result = ""
 
-     for i in range(8):
 
-         result += random.choice(letters_digits)
 
-     return result
 
- @click.command('recreate-all-dataset-indexes', help='Recreate all dataset indexes.')
 
- def recreate_all_dataset_indexes():
 
-     click.echo(click.style('Start recreate all dataset indexes.', fg='green'))
 
-     recreate_count = 0
 
-     page = 1
 
-     while True:
 
-         try:
 
-             datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
 
-                 .order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
 
-         except NotFound:
 
-             break
 
-         page += 1
 
-         for dataset in datasets:
 
-             try:
 
-                 click.echo('Recreating dataset index: {}'.format(dataset.id))
 
-                 index = IndexBuilder.get_index(dataset, 'high_quality')
 
-                 if index and index._is_origin():
 
-                     index.recreate_dataset(dataset)
 
-                     recreate_count += 1
 
-                 else:
 
-                     click.echo('passed.')
 
-             except Exception as e:
 
-                 click.echo(
 
-                     click.style('Recreate dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
 
-                 continue
 
-     click.echo(click.style('Congratulations! Recreate {} dataset indexes.'.format(recreate_count), fg='green'))
 
- @click.command('clean-unused-dataset-indexes', help='Clean unused dataset indexes.')
 
- def clean_unused_dataset_indexes():
 
-     click.echo(click.style('Start clean unused dataset indexes.', fg='green'))
 
-     clean_days = int(current_app.config.get('CLEAN_DAY_SETTING'))
 
-     start_at = time.perf_counter()
 
-     thirty_days_ago = datetime.datetime.now() - datetime.timedelta(days=clean_days)
 
-     page = 1
 
-     while True:
 
-         try:
 
-             datasets = db.session.query(Dataset).filter(Dataset.created_at < thirty_days_ago) \
 
-                 .order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
 
-         except NotFound:
 
-             break
 
-         page += 1
 
-         for dataset in datasets:
 
-             dataset_query = db.session.query(DatasetQuery).filter(
 
-                 DatasetQuery.created_at > thirty_days_ago,
 
-                 DatasetQuery.dataset_id == dataset.id
 
-             ).all()
 
-             if not dataset_query or len(dataset_query) == 0:
 
-                 documents = db.session.query(Document).filter(
 
-                     Document.dataset_id == dataset.id,
 
-                     Document.indexing_status == 'completed',
 
-                     Document.enabled == True,
 
-                     Document.archived == False,
 
-                     Document.updated_at > thirty_days_ago
 
-                 ).all()
 
-                 if not documents or len(documents) == 0:
 
-                     try:
 
-                         # remove index
 
-                         vector_index = IndexBuilder.get_index(dataset, 'high_quality')
 
-                         kw_index = IndexBuilder.get_index(dataset, 'economy')
 
-                         # delete from vector index
 
-                         if vector_index:
 
-                             if dataset.collection_binding_id:
 
-                                 vector_index.delete_by_group_id(dataset.id)
 
-                             else:
 
-                                 if dataset.collection_binding_id:
 
-                                     vector_index.delete_by_group_id(dataset.id)
 
-                                 else:
 
-                                     vector_index.delete()
 
-                         kw_index.delete()
 
-                         # update document
 
-                         update_params = {
 
-                             Document.enabled: False
 
-                         }
 
-                         Document.query.filter_by(dataset_id=dataset.id).update(update_params)
 
-                         db.session.commit()
 
-                         click.echo(click.style('Cleaned unused dataset {} from db success!'.format(dataset.id),
 
-                                                fg='green'))
 
-                     except Exception as e:
 
-                         click.echo(
 
-                             click.style('clean dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
 
-                                         fg='red'))
 
-     end_at = time.perf_counter()
 
-     click.echo(click.style('Cleaned unused dataset from db success latency: {}'.format(end_at - start_at), fg='green'))
 
- @click.command('sync-anthropic-hosted-providers', help='Sync anthropic hosted providers.')
 
- def sync_anthropic_hosted_providers():
 
-     if not hosted_model_providers.anthropic:
 
-         click.echo(click.style('Anthropic hosted provider is not configured.', fg='red'))
 
-         return
 
-     click.echo(click.style('Start sync anthropic hosted providers.', fg='green'))
 
-     count = 0
 
-     new_quota_limit = hosted_model_providers.anthropic.quota_limit
 
-     page = 1
 
-     while True:
 
-         try:
 
-             providers = db.session.query(Provider).filter(
 
-                 Provider.provider_name == 'anthropic',
 
-                 Provider.provider_type == ProviderType.SYSTEM.value,
 
-                 Provider.quota_type == ProviderQuotaType.TRIAL.value,
 
-                 Provider.quota_limit != new_quota_limit
 
-             ).order_by(Provider.created_at.desc()).paginate(page=page, per_page=100)
 
-         except NotFound:
 
-             break
 
-         page += 1
 
-         for provider in providers:
 
-             try:
 
-                 click.echo('Syncing tenant anthropic hosted provider: {}, origin: limit {}, used {}'
 
-                            .format(provider.tenant_id, provider.quota_limit, provider.quota_used))
 
-                 original_quota_limit = provider.quota_limit
 
-                 division = math.ceil(new_quota_limit / 1000)
 
-                 provider.quota_limit = new_quota_limit if original_quota_limit == 1000 \
 
-                     else original_quota_limit * division
 
-                 provider.quota_used = division * provider.quota_used
 
-                 db.session.commit()
 
-                 count += 1
 
-             except Exception as e:
 
-                 click.echo(click.style(
 
-                     'Sync tenant anthropic hosted provider error: {} {}'.format(e.__class__.__name__, str(e)),
 
-                     fg='red'))
 
-                 continue
 
-     click.echo(click.style('Congratulations! Synced {} anthropic hosted providers.'.format(count), fg='green'))
 
- @click.command('create-qdrant-indexes', help='Create qdrant indexes.')
 
- def create_qdrant_indexes():
 
-     click.echo(click.style('Start create qdrant indexes.', fg='green'))
 
-     create_count = 0
 
-     page = 1
 
-     while True:
 
-         try:
 
-             datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
 
-                 .order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
 
-         except NotFound:
 
-             break
 
-         model_manager = ModelManager()
 
-         page += 1
 
-         for dataset in datasets:
 
-             if dataset.index_struct_dict:
 
-                 if dataset.index_struct_dict['type'] != 'qdrant':
 
-                     try:
 
-                         click.echo('Create dataset qdrant index: {}'.format(dataset.id))
 
-                         try:
 
-                             embedding_model = model_manager.get_model_instance(
 
-                                 tenant_id=dataset.tenant_id,
 
-                                 provider=dataset.embedding_model_provider,
 
-                                 model_type=ModelType.TEXT_EMBEDDING,
 
-                                 model=dataset.embedding_model
 
-                             )
 
-                         except Exception:
 
-                             try:
 
-                                 embedding_model = model_manager.get_default_model_instance(
 
-                                     tenant_id=dataset.tenant_id,
 
-                                     model_type=ModelType.TEXT_EMBEDDING,
 
-                                 )
 
-                                 dataset.embedding_model = embedding_model.model
 
-                                 dataset.embedding_model_provider = embedding_model.provider
 
-                             except Exception:
 
-                                 provider = Provider(
 
-                                     id='provider_id',
 
-                                     tenant_id=dataset.tenant_id,
 
-                                     provider_name='openai',
 
-                                     provider_type=ProviderType.SYSTEM.value,
 
-                                     encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
 
-                                     is_valid=True,
 
-                                 )
 
-                                 model_provider = OpenAIProvider(provider=provider)
 
-                                 embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
 
-                                                                   model_provider=model_provider)
 
-                         embeddings = CacheEmbedding(embedding_model)
 
-                         from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
 
-                         index = QdrantVectorIndex(
 
-                             dataset=dataset,
 
-                             config=QdrantConfig(
 
-                                 endpoint=current_app.config.get('QDRANT_URL'),
 
-                                 api_key=current_app.config.get('QDRANT_API_KEY'),
 
-                                 root_path=current_app.root_path
 
-                             ),
 
-                             embeddings=embeddings
 
-                         )
 
-                         if index:
 
-                             index.create_qdrant_dataset(dataset)
 
-                             index_struct = {
 
-                                 "type": 'qdrant',
 
-                                 "vector_store": {
 
-                                     "class_prefix": dataset.index_struct_dict['vector_store']['class_prefix']}
 
-                             }
 
-                             dataset.index_struct = json.dumps(index_struct)
 
-                             db.session.commit()
 
-                             create_count += 1
 
-                         else:
 
-                             click.echo('passed.')
 
-                     except Exception as e:
 
-                         click.echo(
 
-                             click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
 
-                                         fg='red'))
 
-                         continue
 
-     click.echo(click.style('Congratulations! Create {} dataset indexes.'.format(create_count), fg='green'))
 
- @click.command('update-qdrant-indexes', help='Update qdrant indexes.')
 
- def update_qdrant_indexes():
 
-     click.echo(click.style('Start Update qdrant indexes.', fg='green'))
 
-     create_count = 0
 
-     page = 1
 
-     while True:
 
-         try:
 
-             datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
 
-                 .order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
 
-         except NotFound:
 
-             break
 
-         page += 1
 
-         for dataset in datasets:
 
-             if dataset.index_struct_dict:
 
-                 if dataset.index_struct_dict['type'] != 'qdrant':
 
-                     try:
 
-                         click.echo('Update dataset qdrant index: {}'.format(dataset.id))
 
-                         try:
 
-                             embedding_model = ModelFactory.get_embedding_model(
 
-                                 tenant_id=dataset.tenant_id,
 
-                                 model_provider_name=dataset.embedding_model_provider,
 
-                                 model_name=dataset.embedding_model
 
-                             )
 
-                         except Exception:
 
-                             provider = Provider(
 
-                                 id='provider_id',
 
-                                 tenant_id=dataset.tenant_id,
 
-                                 provider_name='openai',
 
-                                 provider_type=ProviderType.CUSTOM.value,
 
-                                 encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
 
-                                 is_valid=True,
 
-                             )
 
-                             model_provider = OpenAIProvider(provider=provider)
 
-                             embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
 
-                                                               model_provider=model_provider)
 
-                         embeddings = CacheEmbedding(embedding_model)
 
-                         from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
 
-                         index = QdrantVectorIndex(
 
-                             dataset=dataset,
 
-                             config=QdrantConfig(
 
-                                 endpoint=current_app.config.get('QDRANT_URL'),
 
-                                 api_key=current_app.config.get('QDRANT_API_KEY'),
 
-                                 root_path=current_app.root_path
 
-                             ),
 
-                             embeddings=embeddings
 
-                         )
 
-                         if index:
 
-                             index.update_qdrant_dataset(dataset)
 
-                             create_count += 1
 
-                         else:
 
-                             click.echo('passed.')
 
-                     except Exception as e:
 
-                         click.echo(
 
-                             click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
 
-                                         fg='red'))
 
-                         continue
 
-     click.echo(click.style('Congratulations! Update {} dataset indexes.'.format(create_count), fg='green'))
 
- @click.command('normalization-collections', help='restore all collections in one')
 
- def normalization_collections():
 
-     click.echo(click.style('Start normalization collections.', fg='green'))
 
-     normalization_count = []
 
-     page = 1
 
-     while True:
 
-         try:
 
-             datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
 
-                 .order_by(Dataset.created_at.desc()).paginate(page=page, per_page=100)
 
-         except NotFound:
 
-             break
 
-         datasets_result = datasets.items
 
-         page += 1
 
-         for i in range(0, len(datasets_result), 5):
 
-             threads = []
 
-             sub_datasets = datasets_result[i:i + 5]
 
-             for dataset in sub_datasets:
 
-                 document_format_thread = threading.Thread(target=deal_dataset_vector, kwargs={
 
-                     'flask_app': current_app._get_current_object(),
 
-                     'dataset': dataset,
 
-                     'normalization_count': normalization_count
 
-                 })
 
-                 threads.append(document_format_thread)
 
-                 document_format_thread.start()
 
-             for thread in threads:
 
-                 thread.join()
 
-     click.echo(click.style('Congratulations! restore {} dataset indexes.'.format(len(normalization_count)), fg='green'))
 
- @click.command('add-qdrant-full-text-index', help='add qdrant full text index')
 
- def add_qdrant_full_text_index():
 
-     click.echo(click.style('Start add full text index.', fg='green'))
 
-     binds = db.session.query(DatasetCollectionBinding).all()
 
-     if binds and current_app.config['VECTOR_STORE'] == 'qdrant':
 
-         qdrant_url = current_app.config['QDRANT_URL']
 
-         qdrant_api_key = current_app.config['QDRANT_API_KEY']
 
-         client = qdrant_client.QdrantClient(
 
-             qdrant_url,
 
-             api_key=qdrant_api_key,  # For Qdrant Cloud, None for local instance
 
-         )
 
-         for bind in binds:
 
-             try:
 
-                 text_index_params = TextIndexParams(
 
-                     type=TextIndexType.TEXT,
 
-                     tokenizer=TokenizerType.MULTILINGUAL,
 
-                     min_token_len=2,
 
-                     max_token_len=20,
 
-                     lowercase=True
 
-                 )
 
-                 client.create_payload_index(bind.collection_name, 'page_content',
 
-                                             field_schema=text_index_params)
 
-             except Exception as e:
 
-                 click.echo(
 
-                     click.style('Create full text index error: {} {}'.format(e.__class__.__name__, str(e)),
 
-                                 fg='red'))
 
-             click.echo(
 
-                 click.style(
 
-                     'Congratulations! add collection {} full text index successful.'.format(bind.collection_name),
 
-                     fg='green'))
 
- def deal_dataset_vector(flask_app: Flask, dataset: Dataset, normalization_count: list):
 
-     with flask_app.app_context():
 
-         try:
 
-             click.echo('restore dataset index: {}'.format(dataset.id))
 
-             try:
 
-                 embedding_model = ModelFactory.get_embedding_model(
 
-                     tenant_id=dataset.tenant_id,
 
-                     model_provider_name=dataset.embedding_model_provider,
 
-                     model_name=dataset.embedding_model
 
-                 )
 
-             except Exception:
 
-                 provider = Provider(
 
-                     id='provider_id',
 
-                     tenant_id=dataset.tenant_id,
 
-                     provider_name='openai',
 
-                     provider_type=ProviderType.CUSTOM.value,
 
-                     encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
 
-                     is_valid=True,
 
-                 )
 
-                 model_provider = OpenAIProvider(provider=provider)
 
-                 embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
 
-                                                   model_provider=model_provider)
 
-             embeddings = CacheEmbedding(embedding_model)
 
-             dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
 
-                 filter(DatasetCollectionBinding.provider_name == embedding_model.model_provider.provider_name,
 
-                        DatasetCollectionBinding.model_name == embedding_model.name). \
 
-                 order_by(DatasetCollectionBinding.created_at). \
 
-                 first()
 
-             if not dataset_collection_binding:
 
-                 dataset_collection_binding = DatasetCollectionBinding(
 
-                     provider_name=embedding_model.model_provider.provider_name,
 
-                     model_name=embedding_model.name,
 
-                     collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node'
 
-                 )
 
-                 db.session.add(dataset_collection_binding)
 
-                 db.session.commit()
 
-             from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
 
-             index = QdrantVectorIndex(
 
-                 dataset=dataset,
 
-                 config=QdrantConfig(
 
-                     endpoint=current_app.config.get('QDRANT_URL'),
 
-                     api_key=current_app.config.get('QDRANT_API_KEY'),
 
-                     root_path=current_app.root_path
 
-                 ),
 
-                 embeddings=embeddings
 
-             )
 
-             if index:
 
-                 # index.delete_by_group_id(dataset.id)
 
-                 index.restore_dataset_in_one(dataset, dataset_collection_binding)
 
-             else:
 
-                 click.echo('passed.')
 
-             normalization_count.append(1)
 
-         except Exception as e:
 
-             click.echo(
 
-                 click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
 
-                             fg='red'))
 
- @click.command('update_app_model_configs', help='Migrate data to support paragraph variable.')
 
- @click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")
 
- def update_app_model_configs(batch_size):
 
-     pre_prompt_template = '{{default_input}}'
 
-     user_input_form_template = {
 
-         "en-US": [
 
-             {
 
-                 "paragraph": {
 
-                     "label": "Query",
 
-                     "variable": "default_input",
 
-                     "required": False,
 
-                     "default": ""
 
-                 }
 
-             }
 
-         ],
 
-         "zh-Hans": [
 
-             {
 
-                 "paragraph": {
 
-                     "label": "查询内容",
 
-                     "variable": "default_input",
 
-                     "required": False,
 
-                     "default": ""
 
-                 }
 
-             }
 
-         ]
 
-     }
 
-     click.secho("Start migrate old data that the text generator can support paragraph variable.", fg='green')
 
-     total_records = db.session.query(AppModelConfig) \
 
-         .join(App, App.app_model_config_id == AppModelConfig.id) \
 
-         .filter(App.mode == 'completion') \
 
-         .count()
 
-     if total_records == 0:
 
-         click.secho("No data to migrate.", fg='green')
 
-         return
 
-     num_batches = (total_records + batch_size - 1) // batch_size
 
-     with tqdm(total=total_records, desc="Migrating Data") as pbar:
 
-         for i in range(num_batches):
 
-             offset = i * batch_size
 
-             limit = min(batch_size, total_records - offset)
 
-             click.secho(f"Fetching batch {i + 1}/{num_batches} from source database...", fg='green')
 
-             data_batch = db.session.query(AppModelConfig) \
 
-                 .join(App, App.app_model_config_id == AppModelConfig.id) \
 
-                 .filter(App.mode == 'completion') \
 
-                 .order_by(App.created_at) \
 
-                 .offset(offset).limit(limit).all()
 
-             if not data_batch:
 
-                 click.secho("No more data to migrate.", fg='green')
 
-                 break
 
-             try:
 
-                 click.secho(f"Migrating {len(data_batch)} records...", fg='green')
 
-                 for data in data_batch:
 
-                     # click.secho(f"Migrating data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')
 
-                     if data.pre_prompt is None:
 
-                         data.pre_prompt = pre_prompt_template
 
-                     else:
 
-                         if pre_prompt_template in data.pre_prompt:
 
-                             continue
 
-                         data.pre_prompt += pre_prompt_template
 
-                     app_data = db.session.query(App) \
 
-                         .filter(App.id == data.app_id) \
 
-                         .one()
 
-                     account_data = db.session.query(Account) \
 
-                         .join(TenantAccountJoin, Account.id == TenantAccountJoin.account_id) \
 
-                         .filter(TenantAccountJoin.role == 'owner') \
 
-                         .filter(TenantAccountJoin.tenant_id == app_data.tenant_id) \
 
-                         .one_or_none()
 
-                     if not account_data:
 
-                         continue
 
-                     if data.user_input_form is None or data.user_input_form == 'null':
 
-                         data.user_input_form = json.dumps(user_input_form_template[account_data.interface_language])
 
-                     else:
 
-                         raw_json_data = json.loads(data.user_input_form)
 
-                         raw_json_data.append(user_input_form_template[account_data.interface_language][0])
 
-                         data.user_input_form = json.dumps(raw_json_data)
 
-                     # click.secho(f"Updated data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')
 
-                 db.session.commit()
 
-             except Exception as e:
 
-                 click.secho(f"Error while migrating data: {e}, app_id: {data.app_id}, app_model_config_id: {data.id}",
 
-                             fg='red')
 
-                 continue
 
-             click.secho(f"Successfully migrated batch {i + 1}/{num_batches}.", fg='green')
 
-             pbar.update(len(data_batch))
 
- @click.command('migrate_default_input_to_dataset_query_variable')
 
- @click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")
 
- def migrate_default_input_to_dataset_query_variable(batch_size):
 
-     click.secho("Starting...", fg='green')
 
-     total_records = db.session.query(AppModelConfig) \
 
-         .join(App, App.app_model_config_id == AppModelConfig.id) \
 
-         .filter(App.mode == 'completion') \
 
-         .filter(AppModelConfig.dataset_query_variable == None) \
 
-         .count()
 
-     if total_records == 0:
 
-         click.secho("No data to migrate.", fg='green')
 
-         return
 
-     num_batches = (total_records + batch_size - 1) // batch_size
 
-     with tqdm(total=total_records, desc="Migrating Data") as pbar:
 
-         for i in range(num_batches):
 
-             offset = i * batch_size
 
-             limit = min(batch_size, total_records - offset)
 
-             click.secho(f"Fetching batch {i + 1}/{num_batches} from source database...", fg='green')
 
-             data_batch = db.session.query(AppModelConfig) \
 
-                 .join(App, App.app_model_config_id == AppModelConfig.id) \
 
-                 .filter(App.mode == 'completion') \
 
-                 .filter(AppModelConfig.dataset_query_variable == None) \
 
-                 .order_by(App.created_at) \
 
-                 .offset(offset).limit(limit).all()
 
-             if not data_batch:
 
-                 click.secho("No more data to migrate.", fg='green')
 
-                 break
 
-             try:
 
-                 click.secho(f"Migrating {len(data_batch)} records...", fg='green')
 
-                 for data in data_batch:
 
-                     config = AppModelConfig.to_dict(data)
 
-                     tools = config["agent_mode"]["tools"]
 
-                     dataset_exists = "dataset" in str(tools)
 
-                     if not dataset_exists:
 
-                         continue
 
-                     user_input_form = config.get("user_input_form", [])
 
-                     for form in user_input_form:
 
-                         paragraph = form.get('paragraph')
 
-                         if paragraph \
 
-                                 and paragraph.get('variable') == 'query':
 
-                             data.dataset_query_variable = 'query'
 
-                             break
 
-                         if paragraph \
 
-                                 and paragraph.get('variable') == 'default_input':
 
-                             data.dataset_query_variable = 'default_input'
 
-                             break
 
-                 db.session.commit()
 
-             except Exception as e:
 
-                 click.secho(f"Error while migrating data: {e}, app_id: {data.app_id}, app_model_config_id: {data.id}",
 
-                             fg='red')
 
-                 continue
 
-             click.secho(f"Successfully migrated batch {i + 1}/{num_batches}.", fg='green')
 
-             pbar.update(len(data_batch))
 
- @click.command('add-annotation-question-field-value', help='add annotation question value')
 
- def add_annotation_question_field_value():
 
-     click.echo(click.style('Start add annotation question value.', fg='green'))
 
-     message_annotations = db.session.query(MessageAnnotation).all()
 
-     message_annotation_deal_count = 0
 
-     if message_annotations:
 
-         for message_annotation in message_annotations:
 
-             try:
 
-                 if message_annotation.message_id and not message_annotation.question:
 
-                     message = db.session.query(Message).filter(
 
-                         Message.id == message_annotation.message_id
 
-                     ).first()
 
-                     message_annotation.question = message.query
 
-                     db.session.add(message_annotation)
 
-                     db.session.commit()
 
-                     message_annotation_deal_count += 1
 
-             except Exception as e:
 
-                 click.echo(
 
-                     click.style('Add annotation question value error: {} {}'.format(e.__class__.__name__, str(e)),
 
-                                 fg='red'))
 
-             click.echo(
 
-                 click.style(f'Congratulations! add annotation question value successful. Deal count {message_annotation_deal_count}', fg='green'))
 
- def register_commands(app):
 
-     app.cli.add_command(reset_password)
 
-     app.cli.add_command(reset_email)
 
-     app.cli.add_command(generate_invitation_codes)
 
-     app.cli.add_command(reset_encrypt_key_pair)
 
-     app.cli.add_command(recreate_all_dataset_indexes)
 
-     app.cli.add_command(sync_anthropic_hosted_providers)
 
-     app.cli.add_command(clean_unused_dataset_indexes)
 
-     app.cli.add_command(create_qdrant_indexes)
 
-     app.cli.add_command(update_qdrant_indexes)
 
-     app.cli.add_command(update_app_model_configs)
 
-     app.cli.add_command(normalization_collections)
 
-     app.cli.add_command(migrate_default_input_to_dataset_query_variable)
 
-     app.cli.add_command(add_qdrant_full_text_index)
 
-     app.cli.add_command(add_annotation_question_field_value)
 
 
  |