| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 | from abc import ABC, abstractmethodfrom enum import Enumfrom typing import Optionalfrom pydantic import BaseModelfrom core.extension.extensible import Extensible, ExtensionModuleclass ModerationAction(Enum):    DIRECT_OUTPUT = 'direct_output'    OVERRIDED = 'overrided'class ModerationInputsResult(BaseModel):    flagged: bool = False    action: ModerationAction    preset_response: str = ""    inputs: dict = {}    query: str = ""class ModerationOutputsResult(BaseModel):    flagged: bool = False    action: ModerationAction    preset_response: str = ""    text: str = ""class Moderation(Extensible, ABC):    """    The base class of moderation.    """    module: ExtensionModule = ExtensionModule.MODERATION    def __init__(self, app_id: str, tenant_id: str, config: Optional[dict] = None) -> None:        super().__init__(tenant_id, config)        self.app_id = app_id    @classmethod    @abstractmethod    def validate_config(cls, tenant_id: str, config: dict) -> None:        """        Validate the incoming form config data.        :param tenant_id: the id of workspace        :param config: the form config data        :return:        """        raise NotImplementedError    @abstractmethod    def moderation_for_inputs(self, inputs: dict, query: str = "") -> ModerationInputsResult:        """        Moderation for inputs.        After the user inputs, this method will be called to perform sensitive content review        on the user inputs and return the processed results.        :param inputs: user inputs        :param query: query string (required in chat app)        :return:        """        raise NotImplementedError    @abstractmethod    def moderation_for_outputs(self, text: str) -> ModerationOutputsResult:        """        Moderation for outputs.        When LLM outputs content, the front end will pass the output content (may be segmented)        to this method for sensitive content review, and the output content will be shielded if the review fails.        :param text: LLM output content        :return:        """        raise NotImplementedError    @classmethod    def _validate_inputs_and_outputs_config(self, config: dict, is_preset_response_required: bool) -> None:        # inputs_config        inputs_config = config.get("inputs_config")        if not isinstance(inputs_config, dict):            raise ValueError("inputs_config must be a dict")        # outputs_config        outputs_config = config.get("outputs_config")        if not isinstance(outputs_config, dict):            raise ValueError("outputs_config must be a dict")        inputs_config_enabled = inputs_config.get("enabled")        outputs_config_enabled = outputs_config.get("enabled")        if not inputs_config_enabled and not outputs_config_enabled:            raise ValueError("At least one of inputs_config or outputs_config must be enabled")        # preset_response        if not is_preset_response_required:            return        if inputs_config_enabled:            if not inputs_config.get("preset_response"):                raise ValueError("inputs_config.preset_response is required")            if len(inputs_config.get("preset_response")) > 100:                raise ValueError("inputs_config.preset_response must be less than 100 characters")        if outputs_config_enabled:            if not outputs_config.get("preset_response"):                raise ValueError("outputs_config.preset_response is required")            if len(outputs_config.get("preset_response")) > 100:                raise ValueError("outputs_config.preset_response must be less than 100 characters")class ModerationException(Exception):    pass
 |