tool_engine.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. import json
  2. from collections.abc import Generator, Iterable
  3. from copy import deepcopy
  4. from datetime import UTC, datetime
  5. from mimetypes import guess_type
  6. from typing import Any, Optional, Union, cast
  7. from yarl import URL
  8. from core.app.entities.app_invoke_entities import InvokeFrom
  9. from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
  10. from core.callback_handler.workflow_tool_callback_handler import DifyWorkflowCallbackHandler
  11. from core.file import FileType
  12. from core.file.models import FileTransferMethod
  13. from core.ops.ops_trace_manager import TraceQueueManager
  14. from core.tools.__base.tool import Tool
  15. from core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMessageBinary, ToolInvokeMeta, ToolParameter
  16. from core.tools.errors import (
  17. ToolEngineInvokeError,
  18. ToolInvokeError,
  19. ToolNotFoundError,
  20. ToolNotSupportedError,
  21. ToolParameterValidationError,
  22. ToolProviderCredentialValidationError,
  23. ToolProviderNotFoundError,
  24. )
  25. from core.tools.utils.message_transformer import ToolFileMessageTransformer
  26. from core.tools.workflow_as_tool.tool import WorkflowTool
  27. from extensions.ext_database import db
  28. from models.enums import CreatedByRole
  29. from models.model import Message, MessageFile
  30. class ToolEngine:
  31. """
  32. Tool runtime engine take care of the tool executions.
  33. """
  34. @staticmethod
  35. def agent_invoke(
  36. tool: Tool,
  37. tool_parameters: Union[str, dict],
  38. user_id: str,
  39. tenant_id: str,
  40. message: Message,
  41. invoke_from: InvokeFrom,
  42. agent_tool_callback: DifyAgentCallbackHandler,
  43. trace_manager: Optional[TraceQueueManager] = None,
  44. conversation_id: Optional[str] = None,
  45. app_id: Optional[str] = None,
  46. message_id: Optional[str] = None,
  47. ) -> tuple[str, list[tuple[MessageFile, str]], ToolInvokeMeta]:
  48. """
  49. Agent invokes the tool with the given arguments.
  50. """
  51. # check if arguments is a string
  52. if isinstance(tool_parameters, str):
  53. # check if this tool has only one parameter
  54. parameters = [
  55. parameter
  56. for parameter in tool.get_runtime_parameters()
  57. if parameter.form == ToolParameter.ToolParameterForm.LLM
  58. ]
  59. if parameters and len(parameters) == 1:
  60. tool_parameters = {parameters[0].name: tool_parameters}
  61. else:
  62. try:
  63. tool_parameters = json.loads(tool_parameters)
  64. except Exception as e:
  65. pass
  66. if not isinstance(tool_parameters, dict):
  67. raise ValueError(f"tool_parameters should be a dict, but got a string: {tool_parameters}")
  68. # invoke the tool
  69. try:
  70. # hit the callback handler
  71. agent_tool_callback.on_tool_start(tool_name=tool.entity.identity.name, tool_inputs=tool_parameters)
  72. messages = ToolEngine._invoke(tool, tool_parameters, user_id, conversation_id, app_id, message_id)
  73. invocation_meta_dict: dict[str, ToolInvokeMeta] = {}
  74. def message_callback(
  75. invocation_meta_dict: dict, messages: Generator[ToolInvokeMessage | ToolInvokeMeta, None, None]
  76. ):
  77. for message in messages:
  78. if isinstance(message, ToolInvokeMeta):
  79. invocation_meta_dict["meta"] = message
  80. else:
  81. yield message
  82. messages = ToolFileMessageTransformer.transform_tool_invoke_messages(
  83. messages=message_callback(invocation_meta_dict, messages),
  84. user_id=user_id,
  85. tenant_id=tenant_id,
  86. conversation_id=message.conversation_id,
  87. )
  88. message_list = list(messages)
  89. # extract binary data from tool invoke message
  90. binary_files = ToolEngine._extract_tool_response_binary_and_text(message_list)
  91. # create message file
  92. message_files = ToolEngine._create_message_files(
  93. tool_messages=binary_files, agent_message=message, invoke_from=invoke_from, user_id=user_id
  94. )
  95. plain_text = ToolEngine._convert_tool_response_to_str(message_list)
  96. meta = invocation_meta_dict["meta"]
  97. # hit the callback handler
  98. agent_tool_callback.on_tool_end(
  99. tool_name=tool.entity.identity.name,
  100. tool_inputs=tool_parameters,
  101. tool_outputs=plain_text,
  102. message_id=message.id,
  103. trace_manager=trace_manager,
  104. )
  105. # transform tool invoke message to get LLM friendly message
  106. return plain_text, message_files, meta
  107. except ToolProviderCredentialValidationError as e:
  108. error_response = "Please check your tool provider credentials"
  109. agent_tool_callback.on_tool_error(e)
  110. except (ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError) as e:
  111. error_response = f"there is not a tool named {tool.entity.identity.name}"
  112. agent_tool_callback.on_tool_error(e)
  113. except ToolParameterValidationError as e:
  114. error_response = f"tool parameters validation error: {e}, please check your tool parameters"
  115. agent_tool_callback.on_tool_error(e)
  116. except ToolInvokeError as e:
  117. error_response = f"tool invoke error: {e}"
  118. agent_tool_callback.on_tool_error(e)
  119. except ToolEngineInvokeError as e:
  120. meta = e.args[0]
  121. error_response = f"tool invoke error: {meta.error}"
  122. agent_tool_callback.on_tool_error(e)
  123. return error_response, [], meta
  124. except Exception as e:
  125. error_response = f"unknown error: {e}"
  126. agent_tool_callback.on_tool_error(e)
  127. return error_response, [], ToolInvokeMeta.error_instance(error_response)
  128. @staticmethod
  129. def generic_invoke(
  130. tool: Tool,
  131. tool_parameters: dict[str, Any],
  132. user_id: str,
  133. workflow_tool_callback: DifyWorkflowCallbackHandler,
  134. workflow_call_depth: int,
  135. thread_pool_id: Optional[str] = None,
  136. conversation_id: Optional[str] = None,
  137. app_id: Optional[str] = None,
  138. message_id: Optional[str] = None,
  139. ) -> Generator[ToolInvokeMessage, None, None]:
  140. """
  141. Workflow invokes the tool with the given arguments.
  142. """
  143. try:
  144. # hit the callback handler
  145. workflow_tool_callback.on_tool_start(tool_name=tool.entity.identity.name, tool_inputs=tool_parameters)
  146. if isinstance(tool, WorkflowTool):
  147. tool.workflow_call_depth = workflow_call_depth + 1
  148. tool.thread_pool_id = thread_pool_id
  149. if tool.runtime and tool.runtime.runtime_parameters:
  150. tool_parameters = {**tool.runtime.runtime_parameters, **tool_parameters}
  151. response = tool.invoke(
  152. user_id=user_id,
  153. tool_parameters=tool_parameters,
  154. conversation_id=conversation_id,
  155. app_id=app_id,
  156. message_id=message_id,
  157. )
  158. # hit the callback handler
  159. response = workflow_tool_callback.on_tool_execution(
  160. tool_name=tool.entity.identity.name,
  161. tool_inputs=tool_parameters,
  162. tool_outputs=response,
  163. )
  164. return response
  165. except Exception as e:
  166. workflow_tool_callback.on_tool_error(e)
  167. raise e
  168. @staticmethod
  169. def _invoke(
  170. tool: Tool,
  171. tool_parameters: dict,
  172. user_id: str,
  173. conversation_id: Optional[str] = None,
  174. app_id: Optional[str] = None,
  175. message_id: Optional[str] = None,
  176. ) -> Generator[ToolInvokeMessage | ToolInvokeMeta, None, None]:
  177. """
  178. Invoke the tool with the given arguments.
  179. """
  180. started_at = datetime.now(UTC)
  181. meta = ToolInvokeMeta(
  182. time_cost=0.0,
  183. error=None,
  184. tool_config={
  185. "tool_name": tool.entity.identity.name,
  186. "tool_provider": tool.entity.identity.provider,
  187. "tool_provider_type": tool.tool_provider_type().value,
  188. "tool_parameters": deepcopy(tool.runtime.runtime_parameters),
  189. "tool_icon": tool.entity.identity.icon,
  190. },
  191. )
  192. try:
  193. yield from tool.invoke(user_id, tool_parameters, conversation_id, app_id, message_id)
  194. except Exception as e:
  195. meta.error = str(e)
  196. raise ToolEngineInvokeError(meta)
  197. finally:
  198. ended_at = datetime.now(UTC)
  199. meta.time_cost = (ended_at - started_at).total_seconds()
  200. yield meta
  201. @staticmethod
  202. def _convert_tool_response_to_str(tool_response: list[ToolInvokeMessage]) -> str:
  203. """
  204. Handle tool response
  205. """
  206. result = ""
  207. for response in tool_response:
  208. if response.type == ToolInvokeMessage.MessageType.TEXT:
  209. result += cast(ToolInvokeMessage.TextMessage, response.message).text
  210. elif response.type == ToolInvokeMessage.MessageType.LINK:
  211. result += (
  212. f"result link: {cast(ToolInvokeMessage.TextMessage, response.message).text}."
  213. + " please tell user to check it."
  214. )
  215. elif response.type in {ToolInvokeMessage.MessageType.IMAGE_LINK, ToolInvokeMessage.MessageType.IMAGE}:
  216. result += (
  217. "image has been created and sent to user already, "
  218. + "you do not need to create it, just tell the user to check it now."
  219. )
  220. elif response.type == ToolInvokeMessage.MessageType.JSON:
  221. text = json.dumps(cast(ToolInvokeMessage.JsonMessage, response.message).json_object, ensure_ascii=False)
  222. result += f"tool response: {text}."
  223. else:
  224. result += f"tool response: {response.message}."
  225. return result
  226. @staticmethod
  227. def _extract_tool_response_binary_and_text(
  228. tool_response: list[ToolInvokeMessage],
  229. ) -> Generator[ToolInvokeMessageBinary, None, None]:
  230. """
  231. Extract tool response binary
  232. """
  233. for response in tool_response:
  234. if response.type in {ToolInvokeMessage.MessageType.IMAGE_LINK, ToolInvokeMessage.MessageType.IMAGE}:
  235. mimetype = None
  236. if not response.meta:
  237. raise ValueError("missing meta data")
  238. if response.meta.get("mime_type"):
  239. mimetype = response.meta.get("mime_type")
  240. else:
  241. try:
  242. url = URL(cast(ToolInvokeMessage.TextMessage, response.message).text)
  243. extension = url.suffix
  244. guess_type_result, _ = guess_type(f"a{extension}")
  245. if guess_type_result:
  246. mimetype = guess_type_result
  247. except Exception:
  248. pass
  249. if not mimetype:
  250. mimetype = "image/jpeg"
  251. yield ToolInvokeMessageBinary(
  252. mimetype=response.meta.get("mime_type", "image/jpeg"),
  253. url=cast(ToolInvokeMessage.TextMessage, response.message).text,
  254. save_as=response.save_as,
  255. )
  256. elif response.type == ToolInvokeMessage.MessageType.BLOB:
  257. if not response.meta:
  258. raise ValueError("missing meta data")
  259. yield ToolInvokeMessageBinary(
  260. mimetype=response.meta.get("mime_type", "octet/stream"),
  261. url=cast(ToolInvokeMessage.TextMessage, response.message).text,
  262. save_as=response.save_as,
  263. )
  264. elif response.type == ToolInvokeMessage.MessageType.LINK:
  265. # check if there is a mime type in meta
  266. if response.meta and "mime_type" in response.meta:
  267. yield ToolInvokeMessageBinary(
  268. mimetype=response.meta.get("mime_type", "octet/stream") if response.meta else "octet/stream",
  269. url=cast(ToolInvokeMessage.TextMessage, response.message).text,
  270. save_as=response.save_as,
  271. )
  272. @staticmethod
  273. def _create_message_files(
  274. tool_messages: Iterable[ToolInvokeMessageBinary],
  275. agent_message: Message,
  276. invoke_from: InvokeFrom,
  277. user_id: str,
  278. ) -> list[tuple[MessageFile, str]]:
  279. """
  280. Create message file
  281. :param messages: messages
  282. :return: message files, should save as variable
  283. """
  284. result = []
  285. for message in tool_messages:
  286. if "image" in message.mimetype:
  287. file_type = FileType.IMAGE
  288. elif "video" in message.mimetype:
  289. file_type = FileType.VIDEO
  290. elif "audio" in message.mimetype:
  291. file_type = FileType.AUDIO
  292. elif "text" in message.mimetype or "pdf" in message.mimetype:
  293. file_type = FileType.DOCUMENT
  294. else:
  295. file_type = FileType.CUSTOM
  296. # extract tool file id from url
  297. tool_file_id = message.url.split("/")[-1].split(".")[0]
  298. message_file = MessageFile(
  299. message_id=agent_message.id,
  300. type=file_type,
  301. transfer_method=FileTransferMethod.TOOL_FILE,
  302. belongs_to="assistant",
  303. url=message.url,
  304. upload_file_id=tool_file_id,
  305. created_by_role=(
  306. CreatedByRole.ACCOUNT
  307. if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
  308. else CreatedByRole.END_USER
  309. ),
  310. created_by=user_id,
  311. )
  312. db.session.add(message_file)
  313. db.session.commit()
  314. db.session.refresh(message_file)
  315. result.append((message_file.id, message.save_as))
  316. db.session.close()
  317. return result