base_agent_runner.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509
  1. import json
  2. import logging
  3. import uuid
  4. from collections.abc import Mapping, Sequence
  5. from typing import Optional, Union, cast
  6. from core.agent.entities import AgentEntity, AgentToolEntity
  7. from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
  8. from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
  9. from core.app.apps.base_app_queue_manager import AppQueueManager
  10. from core.app.apps.base_app_runner import AppRunner
  11. from core.app.entities.app_invoke_entities import (
  12. AgentChatAppGenerateEntity,
  13. ModelConfigWithCredentialsEntity,
  14. )
  15. from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
  16. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  17. from core.file import file_manager
  18. from core.memory.token_buffer_memory import TokenBufferMemory
  19. from core.model_manager import ModelInstance
  20. from core.model_runtime.entities import (
  21. AssistantPromptMessage,
  22. LLMUsage,
  23. PromptMessage,
  24. PromptMessageContent,
  25. PromptMessageTool,
  26. SystemPromptMessage,
  27. TextPromptMessageContent,
  28. ToolPromptMessage,
  29. UserPromptMessage,
  30. )
  31. from core.model_runtime.entities.message_entities import ImagePromptMessageContent
  32. from core.model_runtime.entities.model_entities import ModelFeature
  33. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  34. from core.prompt.utils.extract_thread_messages import extract_thread_messages
  35. from core.tools.__base.tool import Tool
  36. from core.tools.entities.tool_entities import (
  37. ToolParameter,
  38. )
  39. from core.tools.tool_manager import ToolManager
  40. from core.tools.utils.dataset_retriever_tool import DatasetRetrieverTool
  41. from extensions.ext_database import db
  42. from factories import file_factory
  43. from models.model import Conversation, Message, MessageAgentThought, MessageFile
  44. logger = logging.getLogger(__name__)
  45. class BaseAgentRunner(AppRunner):
  46. def __init__(
  47. self,
  48. tenant_id: str,
  49. application_generate_entity: AgentChatAppGenerateEntity,
  50. conversation: Conversation,
  51. app_config: AgentChatAppConfig,
  52. model_config: ModelConfigWithCredentialsEntity,
  53. config: AgentEntity,
  54. queue_manager: AppQueueManager,
  55. message: Message,
  56. user_id: str,
  57. model_instance: ModelInstance,
  58. memory: Optional[TokenBufferMemory] = None,
  59. prompt_messages: Optional[list[PromptMessage]] = None,
  60. ) -> None:
  61. self.tenant_id = tenant_id
  62. self.application_generate_entity = application_generate_entity
  63. self.conversation = conversation
  64. self.app_config = app_config
  65. self.model_config = model_config
  66. self.config = config
  67. self.queue_manager = queue_manager
  68. self.message = message
  69. self.user_id = user_id
  70. self.memory = memory
  71. self.history_prompt_messages = self.organize_agent_history(prompt_messages=prompt_messages or [])
  72. self.model_instance = model_instance
  73. # init callback
  74. self.agent_callback = DifyAgentCallbackHandler()
  75. # init dataset tools
  76. hit_callback = DatasetIndexToolCallbackHandler(
  77. queue_manager=queue_manager,
  78. app_id=self.app_config.app_id,
  79. message_id=message.id,
  80. user_id=user_id,
  81. invoke_from=self.application_generate_entity.invoke_from,
  82. )
  83. self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
  84. tenant_id=tenant_id,
  85. dataset_ids=app_config.dataset.dataset_ids if app_config.dataset else [],
  86. retrieve_config=app_config.dataset.retrieve_config if app_config.dataset else None,
  87. return_resource=app_config.additional_features.show_retrieve_source,
  88. invoke_from=application_generate_entity.invoke_from,
  89. hit_callback=hit_callback,
  90. )
  91. # get how many agent thoughts have been created
  92. self.agent_thought_count = (
  93. db.session.query(MessageAgentThought)
  94. .filter(
  95. MessageAgentThought.message_id == self.message.id,
  96. )
  97. .count()
  98. )
  99. db.session.close()
  100. # check if model supports stream tool call
  101. llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
  102. model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
  103. features = model_schema.features if model_schema and model_schema.features else []
  104. self.stream_tool_call = ModelFeature.STREAM_TOOL_CALL in features
  105. self.files = application_generate_entity.files if ModelFeature.VISION in features else []
  106. self.query = None
  107. self._current_thoughts: list[PromptMessage] = []
  108. def _repack_app_generate_entity(
  109. self, app_generate_entity: AgentChatAppGenerateEntity
  110. ) -> AgentChatAppGenerateEntity:
  111. """
  112. Repack app generate entity
  113. """
  114. if app_generate_entity.app_config.prompt_template.simple_prompt_template is None:
  115. app_generate_entity.app_config.prompt_template.simple_prompt_template = ""
  116. return app_generate_entity
  117. def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
  118. """
  119. convert tool to prompt message tool
  120. """
  121. tool_entity = ToolManager.get_agent_tool_runtime(
  122. tenant_id=self.tenant_id,
  123. app_id=self.app_config.app_id,
  124. agent_tool=tool,
  125. invoke_from=self.application_generate_entity.invoke_from,
  126. )
  127. assert tool_entity.entity.description
  128. message_tool = PromptMessageTool(
  129. name=tool.tool_name,
  130. description=tool_entity.entity.description.llm,
  131. parameters={
  132. "type": "object",
  133. "properties": {},
  134. "required": [],
  135. },
  136. )
  137. parameters = tool_entity.get_merged_runtime_parameters()
  138. for parameter in parameters:
  139. if parameter.form != ToolParameter.ToolParameterForm.LLM:
  140. continue
  141. parameter_type = parameter.type.as_normal_type()
  142. if parameter.type in {
  143. ToolParameter.ToolParameterType.SYSTEM_FILES,
  144. ToolParameter.ToolParameterType.FILE,
  145. ToolParameter.ToolParameterType.FILES,
  146. }:
  147. continue
  148. enum = []
  149. if parameter.type == ToolParameter.ToolParameterType.SELECT:
  150. enum = [option.value for option in parameter.options]
  151. message_tool.parameters["properties"][parameter.name] = {
  152. "type": parameter_type,
  153. "description": parameter.llm_description or "",
  154. }
  155. if len(enum) > 0:
  156. message_tool.parameters["properties"][parameter.name]["enum"] = enum
  157. if parameter.required:
  158. message_tool.parameters["required"].append(parameter.name)
  159. return message_tool, tool_entity
  160. def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
  161. """
  162. convert dataset retriever tool to prompt message tool
  163. """
  164. assert tool.entity.description
  165. prompt_tool = PromptMessageTool(
  166. name=tool.entity.identity.name,
  167. description=tool.entity.description.llm,
  168. parameters={
  169. "type": "object",
  170. "properties": {},
  171. "required": [],
  172. },
  173. )
  174. for parameter in tool.get_runtime_parameters():
  175. parameter_type = "string"
  176. prompt_tool.parameters["properties"][parameter.name] = {
  177. "type": parameter_type,
  178. "description": parameter.llm_description or "",
  179. }
  180. if parameter.required:
  181. if parameter.name not in prompt_tool.parameters["required"]:
  182. prompt_tool.parameters["required"].append(parameter.name)
  183. return prompt_tool
  184. def _init_prompt_tools(self) -> tuple[Mapping[str, Tool], Sequence[PromptMessageTool]]:
  185. """
  186. Init tools
  187. """
  188. tool_instances = {}
  189. prompt_messages_tools = []
  190. for tool in self.app_config.agent.tools or [] if self.app_config.agent else []:
  191. try:
  192. prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
  193. except Exception:
  194. # api tool may be deleted
  195. continue
  196. # save tool entity
  197. tool_instances[tool.tool_name] = tool_entity
  198. # save prompt tool
  199. prompt_messages_tools.append(prompt_tool)
  200. # convert dataset tools into ModelRuntime Tool format
  201. for dataset_tool in self.dataset_tools:
  202. prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
  203. # save prompt tool
  204. prompt_messages_tools.append(prompt_tool)
  205. # save tool entity
  206. tool_instances[dataset_tool.entity.identity.name] = dataset_tool
  207. return tool_instances, prompt_messages_tools
  208. def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
  209. """
  210. update prompt message tool
  211. """
  212. # try to get tool runtime parameters
  213. tool_runtime_parameters = tool.get_runtime_parameters()
  214. for parameter in tool_runtime_parameters:
  215. if parameter.form != ToolParameter.ToolParameterForm.LLM:
  216. continue
  217. parameter_type = parameter.type.as_normal_type()
  218. if parameter.type in {
  219. ToolParameter.ToolParameterType.SYSTEM_FILES,
  220. ToolParameter.ToolParameterType.FILE,
  221. ToolParameter.ToolParameterType.FILES,
  222. }:
  223. continue
  224. enum = []
  225. if parameter.type == ToolParameter.ToolParameterType.SELECT:
  226. enum = [option.value for option in parameter.options]
  227. prompt_tool.parameters["properties"][parameter.name] = {
  228. "type": parameter_type,
  229. "description": parameter.llm_description or "",
  230. }
  231. if len(enum) > 0:
  232. prompt_tool.parameters["properties"][parameter.name]["enum"] = enum
  233. if parameter.required:
  234. if parameter.name not in prompt_tool.parameters["required"]:
  235. prompt_tool.parameters["required"].append(parameter.name)
  236. return prompt_tool
  237. def create_agent_thought(
  238. self, message_id: str, message: str, tool_name: str, tool_input: str, messages_ids: list[str]
  239. ) -> MessageAgentThought:
  240. """
  241. Create agent thought
  242. """
  243. thought = MessageAgentThought(
  244. message_id=message_id,
  245. message_chain_id=None,
  246. thought="",
  247. tool=tool_name,
  248. tool_labels_str="{}",
  249. tool_meta_str="{}",
  250. tool_input=tool_input,
  251. message=message,
  252. message_token=0,
  253. message_unit_price=0,
  254. message_price_unit=0,
  255. message_files=json.dumps(messages_ids) if messages_ids else "",
  256. answer="",
  257. observation="",
  258. answer_token=0,
  259. answer_unit_price=0,
  260. answer_price_unit=0,
  261. tokens=0,
  262. total_price=0,
  263. position=self.agent_thought_count + 1,
  264. currency="USD",
  265. latency=0,
  266. created_by_role="account",
  267. created_by=self.user_id,
  268. )
  269. db.session.add(thought)
  270. db.session.commit()
  271. db.session.refresh(thought)
  272. db.session.close()
  273. self.agent_thought_count += 1
  274. return thought
  275. def save_agent_thought(
  276. self,
  277. agent_thought: MessageAgentThought,
  278. tool_name: str | None,
  279. tool_input: Union[str, dict, None],
  280. thought: str | None,
  281. observation: Union[str, dict, None],
  282. tool_invoke_meta: Union[str, dict, None],
  283. answer: str | None,
  284. messages_ids: list[str],
  285. llm_usage: LLMUsage | None = None,
  286. ):
  287. """
  288. Save agent thought
  289. """
  290. updated_agent_thought = (
  291. db.session.query(MessageAgentThought).filter(MessageAgentThought.id == agent_thought.id).first()
  292. )
  293. if not updated_agent_thought:
  294. raise ValueError("agent thought not found")
  295. if thought is not None:
  296. updated_agent_thought.thought = thought
  297. if tool_name is not None:
  298. updated_agent_thought.tool = tool_name
  299. if tool_input is not None:
  300. if isinstance(tool_input, dict):
  301. try:
  302. tool_input = json.dumps(tool_input, ensure_ascii=False)
  303. except Exception as e:
  304. tool_input = json.dumps(tool_input)
  305. updated_agent_thought.tool_input = tool_input
  306. if observation is not None:
  307. if isinstance(observation, dict):
  308. try:
  309. observation = json.dumps(observation, ensure_ascii=False)
  310. except Exception as e:
  311. observation = json.dumps(observation)
  312. updated_agent_thought.observation = observation
  313. if answer is not None:
  314. updated_agent_thought.answer = answer
  315. if messages_ids is not None and len(messages_ids) > 0:
  316. updated_agent_thought.message_files = json.dumps(messages_ids)
  317. if llm_usage:
  318. updated_agent_thought.message_token = llm_usage.prompt_tokens
  319. updated_agent_thought.message_price_unit = llm_usage.prompt_price_unit
  320. updated_agent_thought.message_unit_price = llm_usage.prompt_unit_price
  321. updated_agent_thought.answer_token = llm_usage.completion_tokens
  322. updated_agent_thought.answer_price_unit = llm_usage.completion_price_unit
  323. updated_agent_thought.answer_unit_price = llm_usage.completion_unit_price
  324. updated_agent_thought.tokens = llm_usage.total_tokens
  325. updated_agent_thought.total_price = llm_usage.total_price
  326. # check if tool labels is not empty
  327. labels = updated_agent_thought.tool_labels or {}
  328. tools = updated_agent_thought.tool.split(";") if updated_agent_thought.tool else []
  329. for tool in tools:
  330. if not tool:
  331. continue
  332. if tool not in labels:
  333. tool_label = ToolManager.get_tool_label(tool)
  334. if tool_label:
  335. labels[tool] = tool_label.to_dict()
  336. else:
  337. labels[tool] = {"en_US": tool, "zh_Hans": tool}
  338. updated_agent_thought.tool_labels_str = json.dumps(labels)
  339. if tool_invoke_meta is not None:
  340. if isinstance(tool_invoke_meta, dict):
  341. try:
  342. tool_invoke_meta = json.dumps(tool_invoke_meta, ensure_ascii=False)
  343. except Exception as e:
  344. tool_invoke_meta = json.dumps(tool_invoke_meta)
  345. updated_agent_thought.tool_meta_str = tool_invoke_meta
  346. db.session.commit()
  347. db.session.close()
  348. def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
  349. """
  350. Organize agent history
  351. """
  352. result = []
  353. # check if there is a system message in the beginning of the conversation
  354. for prompt_message in prompt_messages:
  355. if isinstance(prompt_message, SystemPromptMessage):
  356. result.append(prompt_message)
  357. messages: list[Message] = (
  358. db.session.query(Message)
  359. .filter(
  360. Message.conversation_id == self.message.conversation_id,
  361. )
  362. .order_by(Message.created_at.desc())
  363. .all()
  364. )
  365. messages = list(reversed(extract_thread_messages(messages)))
  366. for message in messages:
  367. if message.id == self.message.id:
  368. continue
  369. result.append(self.organize_agent_user_prompt(message))
  370. agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
  371. if agent_thoughts:
  372. for agent_thought in agent_thoughts:
  373. tools = agent_thought.tool
  374. if tools:
  375. tools = tools.split(";")
  376. tool_calls: list[AssistantPromptMessage.ToolCall] = []
  377. tool_call_response: list[ToolPromptMessage] = []
  378. try:
  379. tool_inputs = json.loads(agent_thought.tool_input)
  380. except Exception as e:
  381. tool_inputs = {tool: {} for tool in tools}
  382. try:
  383. tool_responses = json.loads(agent_thought.observation)
  384. except Exception as e:
  385. tool_responses = dict.fromkeys(tools, agent_thought.observation)
  386. for tool in tools:
  387. # generate a uuid for tool call
  388. tool_call_id = str(uuid.uuid4())
  389. tool_calls.append(
  390. AssistantPromptMessage.ToolCall(
  391. id=tool_call_id,
  392. type="function",
  393. function=AssistantPromptMessage.ToolCall.ToolCallFunction(
  394. name=tool,
  395. arguments=json.dumps(tool_inputs.get(tool, {})),
  396. ),
  397. )
  398. )
  399. tool_call_response.append(
  400. ToolPromptMessage(
  401. content=tool_responses.get(tool, agent_thought.observation),
  402. name=tool,
  403. tool_call_id=tool_call_id,
  404. )
  405. )
  406. result.extend(
  407. [
  408. AssistantPromptMessage(
  409. content=agent_thought.thought,
  410. tool_calls=tool_calls,
  411. ),
  412. *tool_call_response,
  413. ]
  414. )
  415. if not tools:
  416. result.append(AssistantPromptMessage(content=agent_thought.thought))
  417. else:
  418. if message.answer:
  419. result.append(AssistantPromptMessage(content=message.answer))
  420. db.session.close()
  421. return result
  422. def organize_agent_user_prompt(self, message: Message) -> UserPromptMessage:
  423. files = db.session.query(MessageFile).filter(MessageFile.message_id == message.id).all()
  424. if not files:
  425. return UserPromptMessage(content=message.query)
  426. file_extra_config = FileUploadConfigManager.convert(message.app_model_config.to_dict())
  427. if not file_extra_config:
  428. return UserPromptMessage(content=message.query)
  429. image_detail_config = file_extra_config.image_config.detail if file_extra_config.image_config else None
  430. image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
  431. file_objs = file_factory.build_from_message_files(
  432. message_files=files, tenant_id=self.tenant_id, config=file_extra_config
  433. )
  434. if not file_objs:
  435. return UserPromptMessage(content=message.query)
  436. prompt_message_contents: list[PromptMessageContent] = []
  437. prompt_message_contents.append(TextPromptMessageContent(data=message.query))
  438. for file in file_objs:
  439. prompt_message_contents.append(
  440. file_manager.to_prompt_message_content(
  441. file,
  442. image_detail_config=image_detail_config,
  443. )
  444. )
  445. return UserPromptMessage(content=prompt_message_contents)