base_agent_runner.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516
  1. import json
  2. import logging
  3. import uuid
  4. from collections.abc import Mapping, Sequence
  5. from typing import Optional, Union, cast
  6. from core.agent.entities import AgentEntity, AgentToolEntity
  7. from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
  8. from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
  9. from core.app.apps.base_app_queue_manager import AppQueueManager
  10. from core.app.apps.base_app_runner import AppRunner
  11. from core.app.entities.app_invoke_entities import (
  12. AgentChatAppGenerateEntity,
  13. ModelConfigWithCredentialsEntity,
  14. )
  15. from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
  16. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  17. from core.file import file_manager
  18. from core.memory.token_buffer_memory import TokenBufferMemory
  19. from core.model_manager import ModelInstance
  20. from core.model_runtime.entities import (
  21. AssistantPromptMessage,
  22. LLMUsage,
  23. PromptMessage,
  24. PromptMessageContent,
  25. PromptMessageTool,
  26. SystemPromptMessage,
  27. TextPromptMessageContent,
  28. ToolPromptMessage,
  29. UserPromptMessage,
  30. )
  31. from core.model_runtime.entities.message_entities import ImagePromptMessageContent
  32. from core.model_runtime.entities.model_entities import ModelFeature
  33. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  34. from core.prompt.utils.extract_thread_messages import extract_thread_messages
  35. from core.tools.__base.tool import Tool
  36. from core.tools.entities.tool_entities import (
  37. ToolParameter,
  38. )
  39. from core.tools.tool_manager import ToolManager
  40. from core.tools.utils.dataset_retriever_tool import DatasetRetrieverTool
  41. from extensions.ext_database import db
  42. from factories import file_factory
  43. from models.model import Conversation, Message, MessageAgentThought, MessageFile
  44. logger = logging.getLogger(__name__)
  45. class BaseAgentRunner(AppRunner):
  46. def __init__(
  47. self,
  48. tenant_id: str,
  49. application_generate_entity: AgentChatAppGenerateEntity,
  50. conversation: Conversation,
  51. app_config: AgentChatAppConfig,
  52. model_config: ModelConfigWithCredentialsEntity,
  53. config: AgentEntity,
  54. queue_manager: AppQueueManager,
  55. message: Message,
  56. user_id: str,
  57. model_instance: ModelInstance,
  58. memory: Optional[TokenBufferMemory] = None,
  59. prompt_messages: Optional[list[PromptMessage]] = None,
  60. ) -> None:
  61. self.tenant_id = tenant_id
  62. self.application_generate_entity = application_generate_entity
  63. self.conversation = conversation
  64. self.app_config = app_config
  65. self.model_config = model_config
  66. self.config = config
  67. self.queue_manager = queue_manager
  68. self.message = message
  69. self.user_id = user_id
  70. self.memory = memory
  71. self.history_prompt_messages = self.organize_agent_history(prompt_messages=prompt_messages or [])
  72. self.model_instance = model_instance
  73. # init callback
  74. self.agent_callback = DifyAgentCallbackHandler()
  75. # init dataset tools
  76. hit_callback = DatasetIndexToolCallbackHandler(
  77. queue_manager=queue_manager,
  78. app_id=self.app_config.app_id,
  79. message_id=message.id,
  80. user_id=user_id,
  81. invoke_from=self.application_generate_entity.invoke_from,
  82. )
  83. self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
  84. tenant_id=tenant_id,
  85. dataset_ids=app_config.dataset.dataset_ids if app_config.dataset else [],
  86. retrieve_config=app_config.dataset.retrieve_config if app_config.dataset else None,
  87. return_resource=app_config.additional_features.show_retrieve_source,
  88. invoke_from=application_generate_entity.invoke_from,
  89. hit_callback=hit_callback,
  90. )
  91. # get how many agent thoughts have been created
  92. self.agent_thought_count = (
  93. db.session.query(MessageAgentThought)
  94. .filter(
  95. MessageAgentThought.message_id == self.message.id,
  96. )
  97. .count()
  98. )
  99. db.session.close()
  100. # check if model supports stream tool call
  101. llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
  102. model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
  103. if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
  104. self.stream_tool_call = True
  105. else:
  106. self.stream_tool_call = False
  107. # check if model supports vision
  108. if model_schema and ModelFeature.VISION in (model_schema.features or []):
  109. self.files = application_generate_entity.files
  110. else:
  111. self.files = []
  112. self.query = None
  113. self._current_thoughts: list[PromptMessage] = []
  114. def _repack_app_generate_entity(
  115. self, app_generate_entity: AgentChatAppGenerateEntity
  116. ) -> AgentChatAppGenerateEntity:
  117. """
  118. Repack app generate entity
  119. """
  120. if app_generate_entity.app_config.prompt_template.simple_prompt_template is None:
  121. app_generate_entity.app_config.prompt_template.simple_prompt_template = ""
  122. return app_generate_entity
  123. def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
  124. """
  125. convert tool to prompt message tool
  126. """
  127. tool_entity = ToolManager.get_agent_tool_runtime(
  128. tenant_id=self.tenant_id,
  129. app_id=self.app_config.app_id,
  130. agent_tool=tool,
  131. invoke_from=self.application_generate_entity.invoke_from,
  132. )
  133. assert tool_entity.entity.description
  134. message_tool = PromptMessageTool(
  135. name=tool.tool_name,
  136. description=tool_entity.entity.description.llm,
  137. parameters={
  138. "type": "object",
  139. "properties": {},
  140. "required": [],
  141. },
  142. )
  143. parameters = tool_entity.get_merged_runtime_parameters()
  144. for parameter in parameters:
  145. if parameter.form != ToolParameter.ToolParameterForm.LLM:
  146. continue
  147. parameter_type = parameter.type.as_normal_type()
  148. if parameter.type in {
  149. ToolParameter.ToolParameterType.SYSTEM_FILES,
  150. ToolParameter.ToolParameterType.FILE,
  151. ToolParameter.ToolParameterType.FILES,
  152. }:
  153. continue
  154. enum = []
  155. if parameter.type == ToolParameter.ToolParameterType.SELECT:
  156. enum = [option.value for option in parameter.options]
  157. message_tool.parameters["properties"][parameter.name] = {
  158. "type": parameter_type,
  159. "description": parameter.llm_description or "",
  160. }
  161. if len(enum) > 0:
  162. message_tool.parameters["properties"][parameter.name]["enum"] = enum
  163. if parameter.required:
  164. message_tool.parameters["required"].append(parameter.name)
  165. return message_tool, tool_entity
  166. def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
  167. """
  168. convert dataset retriever tool to prompt message tool
  169. """
  170. assert tool.entity.description
  171. prompt_tool = PromptMessageTool(
  172. name=tool.entity.identity.name,
  173. description=tool.entity.description.llm,
  174. parameters={
  175. "type": "object",
  176. "properties": {},
  177. "required": [],
  178. },
  179. )
  180. for parameter in tool.get_runtime_parameters():
  181. parameter_type = "string"
  182. prompt_tool.parameters["properties"][parameter.name] = {
  183. "type": parameter_type,
  184. "description": parameter.llm_description or "",
  185. }
  186. if parameter.required:
  187. if parameter.name not in prompt_tool.parameters["required"]:
  188. prompt_tool.parameters["required"].append(parameter.name)
  189. return prompt_tool
  190. def _init_prompt_tools(self) -> tuple[Mapping[str, Tool], Sequence[PromptMessageTool]]:
  191. """
  192. Init tools
  193. """
  194. tool_instances = {}
  195. prompt_messages_tools = []
  196. for tool in self.app_config.agent.tools or [] if self.app_config.agent else []:
  197. try:
  198. prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
  199. except Exception:
  200. # api tool may be deleted
  201. continue
  202. # save tool entity
  203. tool_instances[tool.tool_name] = tool_entity
  204. # save prompt tool
  205. prompt_messages_tools.append(prompt_tool)
  206. # convert dataset tools into ModelRuntime Tool format
  207. for dataset_tool in self.dataset_tools:
  208. prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
  209. # save prompt tool
  210. prompt_messages_tools.append(prompt_tool)
  211. # save tool entity
  212. tool_instances[dataset_tool.entity.identity.name] = dataset_tool
  213. return tool_instances, prompt_messages_tools
  214. def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
  215. """
  216. update prompt message tool
  217. """
  218. # try to get tool runtime parameters
  219. tool_runtime_parameters = tool.get_runtime_parameters() or []
  220. for parameter in tool_runtime_parameters:
  221. if parameter.form != ToolParameter.ToolParameterForm.LLM:
  222. continue
  223. parameter_type = parameter.type.as_normal_type()
  224. if parameter.type in {
  225. ToolParameter.ToolParameterType.SYSTEM_FILES,
  226. ToolParameter.ToolParameterType.FILE,
  227. ToolParameter.ToolParameterType.FILES,
  228. }:
  229. continue
  230. enum = []
  231. if parameter.type == ToolParameter.ToolParameterType.SELECT:
  232. enum = [option.value for option in parameter.options]
  233. prompt_tool.parameters["properties"][parameter.name] = {
  234. "type": parameter_type,
  235. "description": parameter.llm_description or "",
  236. }
  237. if len(enum) > 0:
  238. prompt_tool.parameters["properties"][parameter.name]["enum"] = enum
  239. if parameter.required:
  240. if parameter.name not in prompt_tool.parameters["required"]:
  241. prompt_tool.parameters["required"].append(parameter.name)
  242. return prompt_tool
  243. def create_agent_thought(
  244. self, message_id: str, message: str, tool_name: str, tool_input: str, messages_ids: list[str]
  245. ) -> MessageAgentThought:
  246. """
  247. Create agent thought
  248. """
  249. thought = MessageAgentThought(
  250. message_id=message_id,
  251. message_chain_id=None,
  252. thought="",
  253. tool=tool_name,
  254. tool_labels_str="{}",
  255. tool_meta_str="{}",
  256. tool_input=tool_input,
  257. message=message,
  258. message_token=0,
  259. message_unit_price=0,
  260. message_price_unit=0,
  261. message_files=json.dumps(messages_ids) if messages_ids else "",
  262. answer="",
  263. observation="",
  264. answer_token=0,
  265. answer_unit_price=0,
  266. answer_price_unit=0,
  267. tokens=0,
  268. total_price=0,
  269. position=self.agent_thought_count + 1,
  270. currency="USD",
  271. latency=0,
  272. created_by_role="account",
  273. created_by=self.user_id,
  274. )
  275. db.session.add(thought)
  276. db.session.commit()
  277. db.session.refresh(thought)
  278. db.session.close()
  279. self.agent_thought_count += 1
  280. return thought
  281. def save_agent_thought(
  282. self,
  283. agent_thought: MessageAgentThought,
  284. tool_name: str | None,
  285. tool_input: Union[str, dict, None],
  286. thought: str | None,
  287. observation: Union[str, dict, None],
  288. tool_invoke_meta: Union[str, dict, None],
  289. answer: str | None,
  290. messages_ids: list[str],
  291. llm_usage: LLMUsage | None = None,
  292. ):
  293. """
  294. Save agent thought
  295. """
  296. updated_agent_thought = (
  297. db.session.query(MessageAgentThought).filter(MessageAgentThought.id == agent_thought.id).first()
  298. )
  299. if not updated_agent_thought:
  300. raise ValueError("agent thought not found")
  301. if thought is not None:
  302. updated_agent_thought.thought = thought
  303. if tool_name is not None:
  304. updated_agent_thought.tool = tool_name
  305. if tool_input is not None:
  306. if isinstance(tool_input, dict):
  307. try:
  308. tool_input = json.dumps(tool_input, ensure_ascii=False)
  309. except Exception as e:
  310. tool_input = json.dumps(tool_input)
  311. updated_agent_thought.tool_input = tool_input
  312. if observation is not None:
  313. if isinstance(observation, dict):
  314. try:
  315. observation = json.dumps(observation, ensure_ascii=False)
  316. except Exception as e:
  317. observation = json.dumps(observation)
  318. updated_agent_thought.observation = observation
  319. if answer is not None:
  320. updated_agent_thought.answer = answer
  321. if messages_ids is not None and len(messages_ids) > 0:
  322. updated_agent_thought.message_files = json.dumps(messages_ids)
  323. if llm_usage:
  324. updated_agent_thought.message_token = llm_usage.prompt_tokens
  325. updated_agent_thought.message_price_unit = llm_usage.prompt_price_unit
  326. updated_agent_thought.message_unit_price = llm_usage.prompt_unit_price
  327. updated_agent_thought.answer_token = llm_usage.completion_tokens
  328. updated_agent_thought.answer_price_unit = llm_usage.completion_price_unit
  329. updated_agent_thought.answer_unit_price = llm_usage.completion_unit_price
  330. updated_agent_thought.tokens = llm_usage.total_tokens
  331. updated_agent_thought.total_price = llm_usage.total_price
  332. # check if tool labels is not empty
  333. labels = updated_agent_thought.tool_labels or {}
  334. tools = updated_agent_thought.tool.split(";") if updated_agent_thought.tool else []
  335. for tool in tools:
  336. if not tool:
  337. continue
  338. if tool not in labels:
  339. tool_label = ToolManager.get_tool_label(tool)
  340. if tool_label:
  341. labels[tool] = tool_label.to_dict()
  342. else:
  343. labels[tool] = {"en_US": tool, "zh_Hans": tool}
  344. updated_agent_thought.tool_labels_str = json.dumps(labels)
  345. if tool_invoke_meta is not None:
  346. if isinstance(tool_invoke_meta, dict):
  347. try:
  348. tool_invoke_meta = json.dumps(tool_invoke_meta, ensure_ascii=False)
  349. except Exception as e:
  350. tool_invoke_meta = json.dumps(tool_invoke_meta)
  351. updated_agent_thought.tool_meta_str = tool_invoke_meta
  352. db.session.commit()
  353. db.session.close()
  354. def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
  355. """
  356. Organize agent history
  357. """
  358. result = []
  359. # check if there is a system message in the beginning of the conversation
  360. for prompt_message in prompt_messages:
  361. if isinstance(prompt_message, SystemPromptMessage):
  362. result.append(prompt_message)
  363. messages: list[Message] = (
  364. db.session.query(Message)
  365. .filter(
  366. Message.conversation_id == self.message.conversation_id,
  367. )
  368. .order_by(Message.created_at.desc())
  369. .all()
  370. )
  371. messages = list(reversed(extract_thread_messages(messages)))
  372. for message in messages:
  373. if message.id == self.message.id:
  374. continue
  375. result.append(self.organize_agent_user_prompt(message))
  376. agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
  377. if agent_thoughts:
  378. for agent_thought in agent_thoughts:
  379. tools = agent_thought.tool
  380. if tools:
  381. tools = tools.split(";")
  382. tool_calls: list[AssistantPromptMessage.ToolCall] = []
  383. tool_call_response: list[ToolPromptMessage] = []
  384. try:
  385. tool_inputs = json.loads(agent_thought.tool_input)
  386. except Exception as e:
  387. tool_inputs = {tool: {} for tool in tools}
  388. try:
  389. tool_responses = json.loads(agent_thought.observation)
  390. except Exception as e:
  391. tool_responses = dict.fromkeys(tools, agent_thought.observation)
  392. for tool in tools:
  393. # generate a uuid for tool call
  394. tool_call_id = str(uuid.uuid4())
  395. tool_calls.append(
  396. AssistantPromptMessage.ToolCall(
  397. id=tool_call_id,
  398. type="function",
  399. function=AssistantPromptMessage.ToolCall.ToolCallFunction(
  400. name=tool,
  401. arguments=json.dumps(tool_inputs.get(tool, {})),
  402. ),
  403. )
  404. )
  405. tool_call_response.append(
  406. ToolPromptMessage(
  407. content=tool_responses.get(tool, agent_thought.observation),
  408. name=tool,
  409. tool_call_id=tool_call_id,
  410. )
  411. )
  412. result.extend(
  413. [
  414. AssistantPromptMessage(
  415. content=agent_thought.thought,
  416. tool_calls=tool_calls,
  417. ),
  418. *tool_call_response,
  419. ]
  420. )
  421. if not tools:
  422. result.append(AssistantPromptMessage(content=agent_thought.thought))
  423. else:
  424. if message.answer:
  425. result.append(AssistantPromptMessage(content=message.answer))
  426. db.session.close()
  427. return result
  428. def organize_agent_user_prompt(self, message: Message) -> UserPromptMessage:
  429. files = db.session.query(MessageFile).filter(MessageFile.message_id == message.id).all()
  430. if not files:
  431. return UserPromptMessage(content=message.query)
  432. file_extra_config = FileUploadConfigManager.convert(message.app_model_config.to_dict())
  433. if not file_extra_config:
  434. return UserPromptMessage(content=message.query)
  435. image_detail_config = file_extra_config.image_config.detail if file_extra_config.image_config else None
  436. image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
  437. file_objs = file_factory.build_from_message_files(
  438. message_files=files, tenant_id=self.tenant_id, config=file_extra_config
  439. )
  440. if not file_objs:
  441. return UserPromptMessage(content=message.query)
  442. prompt_message_contents: list[PromptMessageContent] = []
  443. prompt_message_contents.append(TextPromptMessageContent(data=message.query))
  444. for file in file_objs:
  445. prompt_message_contents.append(
  446. file_manager.to_prompt_message_content(
  447. file,
  448. image_detail_config=image_detail_config,
  449. )
  450. )
  451. return UserPromptMessage(content=prompt_message_contents)