| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427 | import uuidfrom datetime import datetime, timezoneimport pandas as pdfrom flask import requestfrom flask_login import current_userfrom flask_restful import Resource, marshal, reqparsefrom werkzeug.exceptions import Forbidden, NotFoundimport servicesfrom controllers.console import apifrom controllers.console.app.error import ProviderNotInitializeErrorfrom controllers.console.datasets.error import InvalidActionError, NoFileUploadedError, TooManyFilesErrorfrom controllers.console.wraps import (    account_initialization_required,    cloud_edition_billing_knowledge_limit_check,    cloud_edition_billing_resource_check,    setup_required,)from core.errors.error import LLMBadRequestError, ProviderTokenNotInitErrorfrom core.model_manager import ModelManagerfrom core.model_runtime.entities.model_entities import ModelTypefrom extensions.ext_database import dbfrom extensions.ext_redis import redis_clientfrom fields.segment_fields import segment_fieldsfrom libs.login import login_requiredfrom models import DocumentSegmentfrom services.dataset_service import DatasetService, DocumentService, SegmentServicefrom tasks.batch_create_segment_to_index_task import batch_create_segment_to_index_taskfrom tasks.disable_segment_from_index_task import disable_segment_from_index_taskfrom tasks.enable_segment_to_index_task import enable_segment_to_index_taskclass DatasetDocumentSegmentListApi(Resource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id, document_id):        dataset_id = str(dataset_id)        document_id = str(document_id)        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound("Dataset not found.")        try:            DatasetService.check_dataset_permission(dataset, current_user)        except services.errors.account.NoPermissionError as e:            raise Forbidden(str(e))        document = DocumentService.get_document(dataset_id, document_id)        if not document:            raise NotFound("Document not found.")        parser = reqparse.RequestParser()        parser.add_argument("last_id", type=str, default=None, location="args")        parser.add_argument("limit", type=int, default=20, location="args")        parser.add_argument("status", type=str, action="append", default=[], location="args")        parser.add_argument("hit_count_gte", type=int, default=None, location="args")        parser.add_argument("enabled", type=str, default="all", location="args")        parser.add_argument("keyword", type=str, default=None, location="args")        args = parser.parse_args()        last_id = args["last_id"]        limit = min(args["limit"], 100)        status_list = args["status"]        hit_count_gte = args["hit_count_gte"]        keyword = args["keyword"]        query = DocumentSegment.query.filter(            DocumentSegment.document_id == str(document_id), DocumentSegment.tenant_id == current_user.current_tenant_id        )        if last_id is not None:            last_segment = db.session.get(DocumentSegment, str(last_id))            if last_segment:                query = query.filter(DocumentSegment.position > last_segment.position)            else:                return {"data": [], "has_more": False, "limit": limit}, 200        if status_list:            query = query.filter(DocumentSegment.status.in_(status_list))        if hit_count_gte is not None:            query = query.filter(DocumentSegment.hit_count >= hit_count_gte)        if keyword:            query = query.where(DocumentSegment.content.ilike(f"%{keyword}%"))        if args["enabled"].lower() != "all":            if args["enabled"].lower() == "true":                query = query.filter(DocumentSegment.enabled == True)            elif args["enabled"].lower() == "false":                query = query.filter(DocumentSegment.enabled == False)        total = query.count()        segments = query.order_by(DocumentSegment.position).limit(limit + 1).all()        has_more = False        if len(segments) > limit:            has_more = True            segments = segments[:-1]        return {            "data": marshal(segments, segment_fields),            "doc_form": document.doc_form,            "has_more": has_more,            "limit": limit,            "total": total,        }, 200class DatasetDocumentSegmentApi(Resource):    @setup_required    @login_required    @account_initialization_required    @cloud_edition_billing_resource_check("vector_space")    def patch(self, dataset_id, segment_id, action):        dataset_id = str(dataset_id)        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound("Dataset not found.")        # check user's model setting        DatasetService.check_dataset_model_setting(dataset)        # The role of the current user in the ta table must be admin, owner, or editor        if not current_user.is_editor:            raise Forbidden()        try:            DatasetService.check_dataset_permission(dataset, current_user)        except services.errors.account.NoPermissionError as e:            raise Forbidden(str(e))        if dataset.indexing_technique == "high_quality":            # check embedding model setting            try:                model_manager = ModelManager()                model_manager.get_model_instance(                    tenant_id=current_user.current_tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model,                )            except LLMBadRequestError:                raise ProviderNotInitializeError(                    "No Embedding Model available. Please configure a valid provider "                    "in the Settings -> Model Provider."                )            except ProviderTokenNotInitError as ex:                raise ProviderNotInitializeError(ex.description)        segment = DocumentSegment.query.filter(            DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id        ).first()        if not segment:            raise NotFound("Segment not found.")        if segment.status != "completed":            raise NotFound("Segment is not completed, enable or disable function is not allowed")        document_indexing_cache_key = "document_{}_indexing".format(segment.document_id)        cache_result = redis_client.get(document_indexing_cache_key)        if cache_result is not None:            raise InvalidActionError("Document is being indexed, please try again later")        indexing_cache_key = "segment_{}_indexing".format(segment.id)        cache_result = redis_client.get(indexing_cache_key)        if cache_result is not None:            raise InvalidActionError("Segment is being indexed, please try again later")        if action == "enable":            if segment.enabled:                raise InvalidActionError("Segment is already enabled.")            segment.enabled = True            segment.disabled_at = None            segment.disabled_by = None            db.session.commit()            # Set cache to prevent indexing the same segment multiple times            redis_client.setex(indexing_cache_key, 600, 1)            enable_segment_to_index_task.delay(segment.id)            return {"result": "success"}, 200        elif action == "disable":            if not segment.enabled:                raise InvalidActionError("Segment is already disabled.")            segment.enabled = False            segment.disabled_at = datetime.now(timezone.utc).replace(tzinfo=None)            segment.disabled_by = current_user.id            db.session.commit()            # Set cache to prevent indexing the same segment multiple times            redis_client.setex(indexing_cache_key, 600, 1)            disable_segment_from_index_task.delay(segment.id)            return {"result": "success"}, 200        else:            raise InvalidActionError()class DatasetDocumentSegmentAddApi(Resource):    @setup_required    @login_required    @account_initialization_required    @cloud_edition_billing_resource_check("vector_space")    @cloud_edition_billing_knowledge_limit_check("add_segment")    def post(self, dataset_id, document_id):        # check dataset        dataset_id = str(dataset_id)        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound("Dataset not found.")        # check document        document_id = str(document_id)        document = DocumentService.get_document(dataset_id, document_id)        if not document:            raise NotFound("Document not found.")        if not current_user.is_editor:            raise Forbidden()        # check embedding model setting        if dataset.indexing_technique == "high_quality":            try:                model_manager = ModelManager()                model_manager.get_model_instance(                    tenant_id=current_user.current_tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model,                )            except LLMBadRequestError:                raise ProviderNotInitializeError(                    "No Embedding Model available. Please configure a valid provider "                    "in the Settings -> Model Provider."                )            except ProviderTokenNotInitError as ex:                raise ProviderNotInitializeError(ex.description)        try:            DatasetService.check_dataset_permission(dataset, current_user)        except services.errors.account.NoPermissionError as e:            raise Forbidden(str(e))        # validate args        parser = reqparse.RequestParser()        parser.add_argument("content", type=str, required=True, nullable=False, location="json")        parser.add_argument("answer", type=str, required=False, nullable=True, location="json")        parser.add_argument("keywords", type=list, required=False, nullable=True, location="json")        args = parser.parse_args()        SegmentService.segment_create_args_validate(args, document)        segment = SegmentService.create_segment(args, document, dataset)        return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200class DatasetDocumentSegmentUpdateApi(Resource):    @setup_required    @login_required    @account_initialization_required    @cloud_edition_billing_resource_check("vector_space")    def patch(self, dataset_id, document_id, segment_id):        # check dataset        dataset_id = str(dataset_id)        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound("Dataset not found.")        # check user's model setting        DatasetService.check_dataset_model_setting(dataset)        # check document        document_id = str(document_id)        document = DocumentService.get_document(dataset_id, document_id)        if not document:            raise NotFound("Document not found.")        if dataset.indexing_technique == "high_quality":            # check embedding model setting            try:                model_manager = ModelManager()                model_manager.get_model_instance(                    tenant_id=current_user.current_tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model,                )            except LLMBadRequestError:                raise ProviderNotInitializeError(                    "No Embedding Model available. Please configure a valid provider "                    "in the Settings -> Model Provider."                )            except ProviderTokenNotInitError as ex:                raise ProviderNotInitializeError(ex.description)            # check segment        segment_id = str(segment_id)        segment = DocumentSegment.query.filter(            DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id        ).first()        if not segment:            raise NotFound("Segment not found.")        # The role of the current user in the ta table must be admin, owner, or editor        if not current_user.is_editor:            raise Forbidden()        try:            DatasetService.check_dataset_permission(dataset, current_user)        except services.errors.account.NoPermissionError as e:            raise Forbidden(str(e))        # validate args        parser = reqparse.RequestParser()        parser.add_argument("content", type=str, required=True, nullable=False, location="json")        parser.add_argument("answer", type=str, required=False, nullable=True, location="json")        parser.add_argument("keywords", type=list, required=False, nullable=True, location="json")        args = parser.parse_args()        SegmentService.segment_create_args_validate(args, document)        segment = SegmentService.update_segment(args, segment, document, dataset)        return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200    @setup_required    @login_required    @account_initialization_required    def delete(self, dataset_id, document_id, segment_id):        # check dataset        dataset_id = str(dataset_id)        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound("Dataset not found.")        # check user's model setting        DatasetService.check_dataset_model_setting(dataset)        # check document        document_id = str(document_id)        document = DocumentService.get_document(dataset_id, document_id)        if not document:            raise NotFound("Document not found.")        # check segment        segment_id = str(segment_id)        segment = DocumentSegment.query.filter(            DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id        ).first()        if not segment:            raise NotFound("Segment not found.")        # The role of the current user in the ta table must be admin or owner        if not current_user.is_editor:            raise Forbidden()        try:            DatasetService.check_dataset_permission(dataset, current_user)        except services.errors.account.NoPermissionError as e:            raise Forbidden(str(e))        SegmentService.delete_segment(segment, document, dataset)        return {"result": "success"}, 200class DatasetDocumentSegmentBatchImportApi(Resource):    @setup_required    @login_required    @account_initialization_required    @cloud_edition_billing_resource_check("vector_space")    @cloud_edition_billing_knowledge_limit_check("add_segment")    def post(self, dataset_id, document_id):        # check dataset        dataset_id = str(dataset_id)        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound("Dataset not found.")        # check document        document_id = str(document_id)        document = DocumentService.get_document(dataset_id, document_id)        if not document:            raise NotFound("Document not found.")        # get file from request        file = request.files["file"]        # check file        if "file" not in request.files:            raise NoFileUploadedError()        if len(request.files) > 1:            raise TooManyFilesError()        # check file type        if not file.filename.endswith(".csv"):            raise ValueError("Invalid file type. Only CSV files are allowed")        try:            # Skip the first row            df = pd.read_csv(file)            result = []            for index, row in df.iterrows():                if document.doc_form == "qa_model":                    data = {"content": row[0], "answer": row[1]}                else:                    data = {"content": row[0]}                result.append(data)            if len(result) == 0:                raise ValueError("The CSV file is empty.")            # async job            job_id = str(uuid.uuid4())            indexing_cache_key = "segment_batch_import_{}".format(str(job_id))            # send batch add segments task            redis_client.setnx(indexing_cache_key, "waiting")            batch_create_segment_to_index_task.delay(                str(job_id), result, dataset_id, document_id, current_user.current_tenant_id, current_user.id            )        except Exception as e:            return {"error": str(e)}, 500        return {"job_id": job_id, "job_status": "waiting"}, 200    @setup_required    @login_required    @account_initialization_required    def get(self, job_id):        job_id = str(job_id)        indexing_cache_key = "segment_batch_import_{}".format(job_id)        cache_result = redis_client.get(indexing_cache_key)        if cache_result is None:            raise ValueError("The job is not exist.")        return {"job_id": job_id, "job_status": cache_result.decode()}, 200api.add_resource(DatasetDocumentSegmentListApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments")api.add_resource(DatasetDocumentSegmentApi, "/datasets/<uuid:dataset_id>/segments/<uuid:segment_id>/<string:action>")api.add_resource(DatasetDocumentSegmentAddApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segment")api.add_resource(    DatasetDocumentSegmentUpdateApi,    "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>",)api.add_resource(    DatasetDocumentSegmentBatchImportApi,    "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/batch_import",    "/datasets/batch_import_status/<uuid:job_id>",)
 |