node.py 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031
  1. import json
  2. import logging
  3. from collections.abc import Generator, Mapping, Sequence
  4. from typing import TYPE_CHECKING, Any, Optional, cast
  5. from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
  6. from core.entities.model_entities import ModelStatus
  7. from core.entities.provider_entities import QuotaUnit
  8. from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
  9. from core.file import FileType, file_manager
  10. from core.helper.code_executor import CodeExecutor, CodeLanguage
  11. from core.memory.token_buffer_memory import TokenBufferMemory
  12. from core.model_manager import ModelInstance, ModelManager
  13. from core.model_runtime.entities import (
  14. ImagePromptMessageContent,
  15. PromptMessage,
  16. PromptMessageContentType,
  17. TextPromptMessageContent,
  18. )
  19. from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
  20. from core.model_runtime.entities.message_entities import (
  21. AssistantPromptMessage,
  22. PromptMessageContent,
  23. PromptMessageRole,
  24. SystemPromptMessage,
  25. UserPromptMessage,
  26. )
  27. from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey, ModelType
  28. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  29. from core.model_runtime.utils.encoders import jsonable_encoder
  30. from core.prompt.entities.advanced_prompt_entities import CompletionModelPromptTemplate, MemoryConfig
  31. from core.prompt.utils.prompt_message_util import PromptMessageUtil
  32. from core.variables import (
  33. ArrayAnySegment,
  34. ArrayFileSegment,
  35. ArraySegment,
  36. FileSegment,
  37. NoneSegment,
  38. ObjectSegment,
  39. StringSegment,
  40. )
  41. from core.workflow.constants import SYSTEM_VARIABLE_NODE_ID
  42. from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult
  43. from core.workflow.entities.variable_entities import VariableSelector
  44. from core.workflow.entities.variable_pool import VariablePool
  45. from core.workflow.enums import SystemVariableKey
  46. from core.workflow.graph_engine.entities.event import InNodeEvent
  47. from core.workflow.nodes.base import BaseNode
  48. from core.workflow.nodes.enums import NodeType
  49. from core.workflow.nodes.event import (
  50. ModelInvokeCompletedEvent,
  51. NodeEvent,
  52. RunCompletedEvent,
  53. RunRetrieverResourceEvent,
  54. RunStreamChunkEvent,
  55. )
  56. from core.workflow.utils.variable_template_parser import VariableTemplateParser
  57. from extensions.ext_database import db
  58. from models.model import Conversation
  59. from models.provider import Provider, ProviderType
  60. from models.workflow import WorkflowNodeExecutionStatus
  61. from .entities import (
  62. LLMNodeChatModelMessage,
  63. LLMNodeCompletionModelPromptTemplate,
  64. LLMNodeData,
  65. ModelConfig,
  66. )
  67. from .exc import (
  68. FileTypeNotSupportError,
  69. InvalidContextStructureError,
  70. InvalidVariableTypeError,
  71. LLMModeRequiredError,
  72. LLMNodeError,
  73. MemoryRolePrefixRequiredError,
  74. ModelNotExistError,
  75. NoPromptFoundError,
  76. TemplateTypeNotSupportError,
  77. VariableNotFoundError,
  78. )
  79. if TYPE_CHECKING:
  80. from core.file.models import File
  81. logger = logging.getLogger(__name__)
  82. class LLMNode(BaseNode[LLMNodeData]):
  83. _node_data_cls = LLMNodeData
  84. _node_type = NodeType.LLM
  85. def _run(self) -> NodeRunResult | Generator[NodeEvent | InNodeEvent, None, None]:
  86. node_inputs = None
  87. process_data = None
  88. try:
  89. # init messages template
  90. self.node_data.prompt_template = self._transform_chat_messages(self.node_data.prompt_template)
  91. # fetch variables and fetch values from variable pool
  92. inputs = self._fetch_inputs(node_data=self.node_data)
  93. # fetch jinja2 inputs
  94. jinja_inputs = self._fetch_jinja_inputs(node_data=self.node_data)
  95. # merge inputs
  96. inputs.update(jinja_inputs)
  97. node_inputs = {}
  98. # fetch files
  99. files = (
  100. self._fetch_files(selector=self.node_data.vision.configs.variable_selector)
  101. if self.node_data.vision.enabled
  102. else []
  103. )
  104. if files:
  105. node_inputs["#files#"] = [file.to_dict() for file in files]
  106. # fetch context value
  107. generator = self._fetch_context(node_data=self.node_data)
  108. context = None
  109. for event in generator:
  110. if isinstance(event, RunRetrieverResourceEvent):
  111. context = event.context
  112. yield event
  113. if context:
  114. node_inputs["#context#"] = context
  115. # fetch model config
  116. model_instance, model_config = self._fetch_model_config(self.node_data.model)
  117. # fetch memory
  118. memory = self._fetch_memory(node_data_memory=self.node_data.memory, model_instance=model_instance)
  119. query = None
  120. if self.node_data.memory:
  121. query = self.node_data.memory.query_prompt_template
  122. if not query and (
  123. query_variable := self.graph_runtime_state.variable_pool.get(
  124. (SYSTEM_VARIABLE_NODE_ID, SystemVariableKey.QUERY)
  125. )
  126. ):
  127. query = query_variable.text
  128. prompt_messages, stop = self._fetch_prompt_messages(
  129. user_query=query,
  130. user_files=files,
  131. context=context,
  132. memory=memory,
  133. model_config=model_config,
  134. prompt_template=self.node_data.prompt_template,
  135. memory_config=self.node_data.memory,
  136. vision_enabled=self.node_data.vision.enabled,
  137. vision_detail=self.node_data.vision.configs.detail,
  138. variable_pool=self.graph_runtime_state.variable_pool,
  139. jinja2_variables=self.node_data.prompt_config.jinja2_variables,
  140. )
  141. process_data = {
  142. "model_mode": model_config.mode,
  143. "prompts": PromptMessageUtil.prompt_messages_to_prompt_for_saving(
  144. model_mode=model_config.mode, prompt_messages=prompt_messages
  145. ),
  146. "model_provider": model_config.provider,
  147. "model_name": model_config.model,
  148. }
  149. # handle invoke result
  150. generator = self._invoke_llm(
  151. node_data_model=self.node_data.model,
  152. model_instance=model_instance,
  153. prompt_messages=prompt_messages,
  154. stop=stop,
  155. )
  156. result_text = ""
  157. usage = LLMUsage.empty_usage()
  158. finish_reason = None
  159. for event in generator:
  160. if isinstance(event, RunStreamChunkEvent):
  161. yield event
  162. elif isinstance(event, ModelInvokeCompletedEvent):
  163. result_text = event.text
  164. usage = event.usage
  165. finish_reason = event.finish_reason
  166. break
  167. except LLMNodeError as e:
  168. yield RunCompletedEvent(
  169. run_result=NodeRunResult(
  170. status=WorkflowNodeExecutionStatus.FAILED,
  171. error=str(e),
  172. inputs=node_inputs,
  173. process_data=process_data,
  174. )
  175. )
  176. return
  177. except Exception as e:
  178. logger.exception(f"Node {self.node_id} failed to run")
  179. yield RunCompletedEvent(
  180. run_result=NodeRunResult(
  181. status=WorkflowNodeExecutionStatus.FAILED,
  182. error=str(e),
  183. inputs=node_inputs,
  184. process_data=process_data,
  185. )
  186. )
  187. return
  188. outputs = {"text": result_text, "usage": jsonable_encoder(usage), "finish_reason": finish_reason}
  189. yield RunCompletedEvent(
  190. run_result=NodeRunResult(
  191. status=WorkflowNodeExecutionStatus.SUCCEEDED,
  192. inputs=node_inputs,
  193. process_data=process_data,
  194. outputs=outputs,
  195. metadata={
  196. NodeRunMetadataKey.TOTAL_TOKENS: usage.total_tokens,
  197. NodeRunMetadataKey.TOTAL_PRICE: usage.total_price,
  198. NodeRunMetadataKey.CURRENCY: usage.currency,
  199. },
  200. llm_usage=usage,
  201. )
  202. )
  203. def _invoke_llm(
  204. self,
  205. node_data_model: ModelConfig,
  206. model_instance: ModelInstance,
  207. prompt_messages: Sequence[PromptMessage],
  208. stop: Optional[Sequence[str]] = None,
  209. ) -> Generator[NodeEvent, None, None]:
  210. db.session.close()
  211. invoke_result = model_instance.invoke_llm(
  212. prompt_messages=prompt_messages,
  213. model_parameters=node_data_model.completion_params,
  214. stop=stop,
  215. stream=True,
  216. user=self.user_id,
  217. )
  218. # handle invoke result
  219. generator = self._handle_invoke_result(invoke_result=invoke_result)
  220. usage = LLMUsage.empty_usage()
  221. for event in generator:
  222. yield event
  223. if isinstance(event, ModelInvokeCompletedEvent):
  224. usage = event.usage
  225. # deduct quota
  226. self.deduct_llm_quota(tenant_id=self.tenant_id, model_instance=model_instance, usage=usage)
  227. def _handle_invoke_result(self, invoke_result: LLMResult | Generator) -> Generator[NodeEvent, None, None]:
  228. if isinstance(invoke_result, LLMResult):
  229. return
  230. model = None
  231. prompt_messages: list[PromptMessage] = []
  232. full_text = ""
  233. usage = None
  234. finish_reason = None
  235. for result in invoke_result:
  236. text = result.delta.message.content
  237. full_text += text
  238. yield RunStreamChunkEvent(chunk_content=text, from_variable_selector=[self.node_id, "text"])
  239. if not model:
  240. model = result.model
  241. if not prompt_messages:
  242. prompt_messages = result.prompt_messages
  243. if not usage and result.delta.usage:
  244. usage = result.delta.usage
  245. if not finish_reason and result.delta.finish_reason:
  246. finish_reason = result.delta.finish_reason
  247. if not usage:
  248. usage = LLMUsage.empty_usage()
  249. yield ModelInvokeCompletedEvent(text=full_text, usage=usage, finish_reason=finish_reason)
  250. def _transform_chat_messages(
  251. self, messages: Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate, /
  252. ) -> Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate:
  253. if isinstance(messages, LLMNodeCompletionModelPromptTemplate):
  254. if messages.edition_type == "jinja2" and messages.jinja2_text:
  255. messages.text = messages.jinja2_text
  256. return messages
  257. for message in messages:
  258. if message.edition_type == "jinja2" and message.jinja2_text:
  259. message.text = message.jinja2_text
  260. return messages
  261. def _fetch_jinja_inputs(self, node_data: LLMNodeData) -> dict[str, str]:
  262. variables = {}
  263. if not node_data.prompt_config:
  264. return variables
  265. for variable_selector in node_data.prompt_config.jinja2_variables or []:
  266. variable_name = variable_selector.variable
  267. variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
  268. if variable is None:
  269. raise VariableNotFoundError(f"Variable {variable_selector.variable} not found")
  270. def parse_dict(input_dict: Mapping[str, Any]) -> str:
  271. """
  272. Parse dict into string
  273. """
  274. # check if it's a context structure
  275. if "metadata" in input_dict and "_source" in input_dict["metadata"] and "content" in input_dict:
  276. return input_dict["content"]
  277. # else, parse the dict
  278. try:
  279. return json.dumps(input_dict, ensure_ascii=False)
  280. except Exception:
  281. return str(input_dict)
  282. if isinstance(variable, ArraySegment):
  283. result = ""
  284. for item in variable.value:
  285. if isinstance(item, dict):
  286. result += parse_dict(item)
  287. else:
  288. result += str(item)
  289. result += "\n"
  290. value = result.strip()
  291. elif isinstance(variable, ObjectSegment):
  292. value = parse_dict(variable.value)
  293. else:
  294. value = variable.text
  295. variables[variable_name] = value
  296. return variables
  297. def _fetch_inputs(self, node_data: LLMNodeData) -> dict[str, Any]:
  298. inputs = {}
  299. prompt_template = node_data.prompt_template
  300. variable_selectors = []
  301. if isinstance(prompt_template, list):
  302. for prompt in prompt_template:
  303. variable_template_parser = VariableTemplateParser(template=prompt.text)
  304. variable_selectors.extend(variable_template_parser.extract_variable_selectors())
  305. elif isinstance(prompt_template, CompletionModelPromptTemplate):
  306. variable_template_parser = VariableTemplateParser(template=prompt_template.text)
  307. variable_selectors = variable_template_parser.extract_variable_selectors()
  308. for variable_selector in variable_selectors:
  309. variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
  310. if variable is None:
  311. raise VariableNotFoundError(f"Variable {variable_selector.variable} not found")
  312. if isinstance(variable, NoneSegment):
  313. inputs[variable_selector.variable] = ""
  314. inputs[variable_selector.variable] = variable.to_object()
  315. memory = node_data.memory
  316. if memory and memory.query_prompt_template:
  317. query_variable_selectors = VariableTemplateParser(
  318. template=memory.query_prompt_template
  319. ).extract_variable_selectors()
  320. for variable_selector in query_variable_selectors:
  321. variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
  322. if variable is None:
  323. raise VariableNotFoundError(f"Variable {variable_selector.variable} not found")
  324. if isinstance(variable, NoneSegment):
  325. continue
  326. inputs[variable_selector.variable] = variable.to_object()
  327. return inputs
  328. def _fetch_files(self, *, selector: Sequence[str]) -> Sequence["File"]:
  329. variable = self.graph_runtime_state.variable_pool.get(selector)
  330. if variable is None:
  331. return []
  332. elif isinstance(variable, FileSegment):
  333. return [variable.value]
  334. elif isinstance(variable, ArrayFileSegment):
  335. return variable.value
  336. elif isinstance(variable, NoneSegment | ArrayAnySegment):
  337. return []
  338. raise InvalidVariableTypeError(f"Invalid variable type: {type(variable)}")
  339. def _fetch_context(self, node_data: LLMNodeData):
  340. if not node_data.context.enabled:
  341. return
  342. if not node_data.context.variable_selector:
  343. return
  344. context_value_variable = self.graph_runtime_state.variable_pool.get(node_data.context.variable_selector)
  345. if context_value_variable:
  346. if isinstance(context_value_variable, StringSegment):
  347. yield RunRetrieverResourceEvent(retriever_resources=[], context=context_value_variable.value)
  348. elif isinstance(context_value_variable, ArraySegment):
  349. context_str = ""
  350. original_retriever_resource = []
  351. for item in context_value_variable.value:
  352. if isinstance(item, str):
  353. context_str += item + "\n"
  354. else:
  355. if "content" not in item:
  356. raise InvalidContextStructureError(f"Invalid context structure: {item}")
  357. context_str += item["content"] + "\n"
  358. retriever_resource = self._convert_to_original_retriever_resource(item)
  359. if retriever_resource:
  360. original_retriever_resource.append(retriever_resource)
  361. yield RunRetrieverResourceEvent(
  362. retriever_resources=original_retriever_resource, context=context_str.strip()
  363. )
  364. def _convert_to_original_retriever_resource(self, context_dict: dict) -> Optional[dict]:
  365. if (
  366. "metadata" in context_dict
  367. and "_source" in context_dict["metadata"]
  368. and context_dict["metadata"]["_source"] == "knowledge"
  369. ):
  370. metadata = context_dict.get("metadata", {})
  371. source = {
  372. "position": metadata.get("position"),
  373. "dataset_id": metadata.get("dataset_id"),
  374. "dataset_name": metadata.get("dataset_name"),
  375. "document_id": metadata.get("document_id"),
  376. "document_name": metadata.get("document_name"),
  377. "data_source_type": metadata.get("document_data_source_type"),
  378. "segment_id": metadata.get("segment_id"),
  379. "retriever_from": metadata.get("retriever_from"),
  380. "score": metadata.get("score"),
  381. "hit_count": metadata.get("segment_hit_count"),
  382. "word_count": metadata.get("segment_word_count"),
  383. "segment_position": metadata.get("segment_position"),
  384. "index_node_hash": metadata.get("segment_index_node_hash"),
  385. "content": context_dict.get("content"),
  386. "page": metadata.get("page"),
  387. }
  388. return source
  389. return None
  390. def _fetch_model_config(
  391. self, node_data_model: ModelConfig
  392. ) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]:
  393. model_name = node_data_model.name
  394. provider_name = node_data_model.provider
  395. model_manager = ModelManager()
  396. model_instance = model_manager.get_model_instance(
  397. tenant_id=self.tenant_id, model_type=ModelType.LLM, provider=provider_name, model=model_name
  398. )
  399. provider_model_bundle = model_instance.provider_model_bundle
  400. model_type_instance = model_instance.model_type_instance
  401. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  402. model_credentials = model_instance.credentials
  403. # check model
  404. provider_model = provider_model_bundle.configuration.get_provider_model(
  405. model=model_name, model_type=ModelType.LLM
  406. )
  407. if provider_model is None:
  408. raise ModelNotExistError(f"Model {model_name} not exist.")
  409. if provider_model.status == ModelStatus.NO_CONFIGURE:
  410. raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
  411. elif provider_model.status == ModelStatus.NO_PERMISSION:
  412. raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
  413. elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
  414. raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
  415. # model config
  416. completion_params = node_data_model.completion_params
  417. stop = []
  418. if "stop" in completion_params:
  419. stop = completion_params["stop"]
  420. del completion_params["stop"]
  421. # get model mode
  422. model_mode = node_data_model.mode
  423. if not model_mode:
  424. raise LLMModeRequiredError("LLM mode is required.")
  425. model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
  426. if not model_schema:
  427. raise ModelNotExistError(f"Model {model_name} not exist.")
  428. return model_instance, ModelConfigWithCredentialsEntity(
  429. provider=provider_name,
  430. model=model_name,
  431. model_schema=model_schema,
  432. mode=model_mode,
  433. provider_model_bundle=provider_model_bundle,
  434. credentials=model_credentials,
  435. parameters=completion_params,
  436. stop=stop,
  437. )
  438. def _fetch_memory(
  439. self, node_data_memory: Optional[MemoryConfig], model_instance: ModelInstance
  440. ) -> Optional[TokenBufferMemory]:
  441. if not node_data_memory:
  442. return None
  443. # get conversation id
  444. conversation_id_variable = self.graph_runtime_state.variable_pool.get(
  445. ["sys", SystemVariableKey.CONVERSATION_ID.value]
  446. )
  447. if not isinstance(conversation_id_variable, StringSegment):
  448. return None
  449. conversation_id = conversation_id_variable.value
  450. # get conversation
  451. conversation = (
  452. db.session.query(Conversation)
  453. .filter(Conversation.app_id == self.app_id, Conversation.id == conversation_id)
  454. .first()
  455. )
  456. if not conversation:
  457. return None
  458. memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
  459. return memory
  460. def _fetch_prompt_messages(
  461. self,
  462. *,
  463. user_query: str | None = None,
  464. user_files: Sequence["File"],
  465. context: str | None = None,
  466. memory: TokenBufferMemory | None = None,
  467. model_config: ModelConfigWithCredentialsEntity,
  468. prompt_template: Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate,
  469. memory_config: MemoryConfig | None = None,
  470. vision_enabled: bool = False,
  471. vision_detail: ImagePromptMessageContent.DETAIL,
  472. variable_pool: VariablePool,
  473. jinja2_variables: Sequence[VariableSelector],
  474. ) -> tuple[Sequence[PromptMessage], Optional[Sequence[str]]]:
  475. prompt_messages = []
  476. if isinstance(prompt_template, list):
  477. # For chat model
  478. prompt_messages.extend(
  479. _handle_list_messages(
  480. messages=prompt_template,
  481. context=context,
  482. jinja2_variables=jinja2_variables,
  483. variable_pool=variable_pool,
  484. vision_detail_config=vision_detail,
  485. )
  486. )
  487. # Get memory messages for chat mode
  488. memory_messages = _handle_memory_chat_mode(
  489. memory=memory,
  490. memory_config=memory_config,
  491. model_config=model_config,
  492. )
  493. # Extend prompt_messages with memory messages
  494. prompt_messages.extend(memory_messages)
  495. # Add current query to the prompt messages
  496. if user_query:
  497. message = LLMNodeChatModelMessage(
  498. text=user_query,
  499. role=PromptMessageRole.USER,
  500. edition_type="basic",
  501. )
  502. prompt_messages.extend(
  503. _handle_list_messages(
  504. messages=[message],
  505. context="",
  506. jinja2_variables=[],
  507. variable_pool=variable_pool,
  508. vision_detail_config=vision_detail,
  509. )
  510. )
  511. elif isinstance(prompt_template, LLMNodeCompletionModelPromptTemplate):
  512. # For completion model
  513. prompt_messages.extend(
  514. _handle_completion_template(
  515. template=prompt_template,
  516. context=context,
  517. jinja2_variables=jinja2_variables,
  518. variable_pool=variable_pool,
  519. )
  520. )
  521. # Get memory text for completion model
  522. memory_text = _handle_memory_completion_mode(
  523. memory=memory,
  524. memory_config=memory_config,
  525. model_config=model_config,
  526. )
  527. # Insert histories into the prompt
  528. prompt_content = prompt_messages[0].content
  529. if "#histories#" in prompt_content:
  530. prompt_content = prompt_content.replace("#histories#", memory_text)
  531. else:
  532. prompt_content = memory_text + "\n" + prompt_content
  533. prompt_messages[0].content = prompt_content
  534. # Add current query to the prompt message
  535. if user_query:
  536. prompt_content = prompt_messages[0].content.replace("#sys.query#", user_query)
  537. prompt_messages[0].content = prompt_content
  538. else:
  539. raise TemplateTypeNotSupportError(type_name=str(type(prompt_template)))
  540. if vision_enabled and user_files:
  541. file_prompts = []
  542. for file in user_files:
  543. file_prompt = file_manager.to_prompt_message_content(file, image_detail_config=vision_detail)
  544. file_prompts.append(file_prompt)
  545. if (
  546. len(prompt_messages) > 0
  547. and isinstance(prompt_messages[-1], UserPromptMessage)
  548. and isinstance(prompt_messages[-1].content, list)
  549. ):
  550. prompt_messages[-1] = UserPromptMessage(content=prompt_messages[-1].content + file_prompts)
  551. else:
  552. prompt_messages.append(UserPromptMessage(content=file_prompts))
  553. # Filter prompt messages
  554. filtered_prompt_messages = []
  555. for prompt_message in prompt_messages:
  556. if isinstance(prompt_message.content, list):
  557. prompt_message_content = []
  558. for content_item in prompt_message.content:
  559. # Skip content if features are not defined
  560. if not model_config.model_schema.features:
  561. if content_item.type != PromptMessageContentType.TEXT:
  562. continue
  563. prompt_message_content.append(content_item)
  564. continue
  565. # Skip content if corresponding feature is not supported
  566. if (
  567. (
  568. content_item.type == PromptMessageContentType.IMAGE
  569. and ModelFeature.VISION not in model_config.model_schema.features
  570. )
  571. or (
  572. content_item.type == PromptMessageContentType.DOCUMENT
  573. and ModelFeature.DOCUMENT not in model_config.model_schema.features
  574. )
  575. or (
  576. content_item.type == PromptMessageContentType.VIDEO
  577. and ModelFeature.VIDEO not in model_config.model_schema.features
  578. )
  579. or (
  580. content_item.type == PromptMessageContentType.AUDIO
  581. and ModelFeature.AUDIO not in model_config.model_schema.features
  582. )
  583. ):
  584. raise FileTypeNotSupportError(type_name=content_item.type)
  585. prompt_message_content.append(content_item)
  586. if len(prompt_message_content) == 1 and prompt_message_content[0].type == PromptMessageContentType.TEXT:
  587. prompt_message.content = prompt_message_content[0].data
  588. else:
  589. prompt_message.content = prompt_message_content
  590. if prompt_message.is_empty():
  591. continue
  592. filtered_prompt_messages.append(prompt_message)
  593. if len(filtered_prompt_messages) == 0:
  594. raise NoPromptFoundError(
  595. "No prompt found in the LLM configuration. "
  596. "Please ensure a prompt is properly configured before proceeding."
  597. )
  598. stop = model_config.stop
  599. return filtered_prompt_messages, stop
  600. @classmethod
  601. def deduct_llm_quota(cls, tenant_id: str, model_instance: ModelInstance, usage: LLMUsage) -> None:
  602. provider_model_bundle = model_instance.provider_model_bundle
  603. provider_configuration = provider_model_bundle.configuration
  604. if provider_configuration.using_provider_type != ProviderType.SYSTEM:
  605. return
  606. system_configuration = provider_configuration.system_configuration
  607. quota_unit = None
  608. for quota_configuration in system_configuration.quota_configurations:
  609. if quota_configuration.quota_type == system_configuration.current_quota_type:
  610. quota_unit = quota_configuration.quota_unit
  611. if quota_configuration.quota_limit == -1:
  612. return
  613. break
  614. used_quota = None
  615. if quota_unit:
  616. if quota_unit == QuotaUnit.TOKENS:
  617. used_quota = usage.total_tokens
  618. elif quota_unit == QuotaUnit.CREDITS:
  619. used_quota = 1
  620. if "gpt-4" in model_instance.model:
  621. used_quota = 20
  622. else:
  623. used_quota = 1
  624. if used_quota is not None and system_configuration.current_quota_type is not None:
  625. db.session.query(Provider).filter(
  626. Provider.tenant_id == tenant_id,
  627. Provider.provider_name == model_instance.provider,
  628. Provider.provider_type == ProviderType.SYSTEM.value,
  629. Provider.quota_type == system_configuration.current_quota_type.value,
  630. Provider.quota_limit > Provider.quota_used,
  631. ).update({"quota_used": Provider.quota_used + used_quota})
  632. db.session.commit()
  633. @classmethod
  634. def _extract_variable_selector_to_variable_mapping(
  635. cls,
  636. *,
  637. graph_config: Mapping[str, Any],
  638. node_id: str,
  639. node_data: LLMNodeData,
  640. ) -> Mapping[str, Sequence[str]]:
  641. prompt_template = node_data.prompt_template
  642. variable_selectors = []
  643. if isinstance(prompt_template, list) and all(
  644. isinstance(prompt, LLMNodeChatModelMessage) for prompt in prompt_template
  645. ):
  646. for prompt in prompt_template:
  647. if prompt.edition_type != "jinja2":
  648. variable_template_parser = VariableTemplateParser(template=prompt.text)
  649. variable_selectors.extend(variable_template_parser.extract_variable_selectors())
  650. elif isinstance(prompt_template, LLMNodeCompletionModelPromptTemplate):
  651. if prompt_template.edition_type != "jinja2":
  652. variable_template_parser = VariableTemplateParser(template=prompt_template.text)
  653. variable_selectors = variable_template_parser.extract_variable_selectors()
  654. else:
  655. raise InvalidVariableTypeError(f"Invalid prompt template type: {type(prompt_template)}")
  656. variable_mapping = {}
  657. for variable_selector in variable_selectors:
  658. variable_mapping[variable_selector.variable] = variable_selector.value_selector
  659. memory = node_data.memory
  660. if memory and memory.query_prompt_template:
  661. query_variable_selectors = VariableTemplateParser(
  662. template=memory.query_prompt_template
  663. ).extract_variable_selectors()
  664. for variable_selector in query_variable_selectors:
  665. variable_mapping[variable_selector.variable] = variable_selector.value_selector
  666. if node_data.context.enabled:
  667. variable_mapping["#context#"] = node_data.context.variable_selector
  668. if node_data.vision.enabled:
  669. variable_mapping["#files#"] = ["sys", SystemVariableKey.FILES.value]
  670. if node_data.memory:
  671. variable_mapping["#sys.query#"] = ["sys", SystemVariableKey.QUERY.value]
  672. if node_data.prompt_config:
  673. enable_jinja = False
  674. if isinstance(prompt_template, list):
  675. for prompt in prompt_template:
  676. if prompt.edition_type == "jinja2":
  677. enable_jinja = True
  678. break
  679. else:
  680. if prompt_template.edition_type == "jinja2":
  681. enable_jinja = True
  682. if enable_jinja:
  683. for variable_selector in node_data.prompt_config.jinja2_variables or []:
  684. variable_mapping[variable_selector.variable] = variable_selector.value_selector
  685. variable_mapping = {node_id + "." + key: value for key, value in variable_mapping.items()}
  686. return variable_mapping
  687. @classmethod
  688. def get_default_config(cls, filters: Optional[dict] = None) -> dict:
  689. return {
  690. "type": "llm",
  691. "config": {
  692. "prompt_templates": {
  693. "chat_model": {
  694. "prompts": [
  695. {"role": "system", "text": "You are a helpful AI assistant.", "edition_type": "basic"}
  696. ]
  697. },
  698. "completion_model": {
  699. "conversation_histories_role": {"user_prefix": "Human", "assistant_prefix": "Assistant"},
  700. "prompt": {
  701. "text": "Here is the chat histories between human and assistant, inside "
  702. "<histories></histories> XML tags.\n\n<histories>\n{{"
  703. "#histories#}}\n</histories>\n\n\nHuman: {{#sys.query#}}\n\nAssistant:",
  704. "edition_type": "basic",
  705. },
  706. "stop": ["Human:"],
  707. },
  708. }
  709. },
  710. }
  711. def _combine_message_content_with_role(*, contents: Sequence[PromptMessageContent], role: PromptMessageRole):
  712. match role:
  713. case PromptMessageRole.USER:
  714. return UserPromptMessage(content=contents)
  715. case PromptMessageRole.ASSISTANT:
  716. return AssistantPromptMessage(content=contents)
  717. case PromptMessageRole.SYSTEM:
  718. return SystemPromptMessage(content=contents)
  719. raise NotImplementedError(f"Role {role} is not supported")
  720. def _render_jinja2_message(
  721. *,
  722. template: str,
  723. jinjia2_variables: Sequence[VariableSelector],
  724. variable_pool: VariablePool,
  725. ):
  726. if not template:
  727. return ""
  728. jinjia2_inputs = {}
  729. for jinja2_variable in jinjia2_variables:
  730. variable = variable_pool.get(jinja2_variable.value_selector)
  731. jinjia2_inputs[jinja2_variable.variable] = variable.to_object() if variable else ""
  732. code_execute_resp = CodeExecutor.execute_workflow_code_template(
  733. language=CodeLanguage.JINJA2,
  734. code=template,
  735. inputs=jinjia2_inputs,
  736. )
  737. result_text = code_execute_resp["result"]
  738. return result_text
  739. def _handle_list_messages(
  740. *,
  741. messages: Sequence[LLMNodeChatModelMessage],
  742. context: Optional[str],
  743. jinja2_variables: Sequence[VariableSelector],
  744. variable_pool: VariablePool,
  745. vision_detail_config: ImagePromptMessageContent.DETAIL,
  746. ) -> Sequence[PromptMessage]:
  747. prompt_messages = []
  748. for message in messages:
  749. if message.edition_type == "jinja2":
  750. result_text = _render_jinja2_message(
  751. template=message.jinja2_text or "",
  752. jinjia2_variables=jinja2_variables,
  753. variable_pool=variable_pool,
  754. )
  755. prompt_message = _combine_message_content_with_role(
  756. contents=[TextPromptMessageContent(data=result_text)], role=message.role
  757. )
  758. prompt_messages.append(prompt_message)
  759. else:
  760. # Get segment group from basic message
  761. if context:
  762. template = message.text.replace("{#context#}", context)
  763. else:
  764. template = message.text
  765. segment_group = variable_pool.convert_template(template)
  766. # Process segments for images
  767. file_contents = []
  768. for segment in segment_group.value:
  769. if isinstance(segment, ArrayFileSegment):
  770. for file in segment.value:
  771. if file.type in {FileType.IMAGE, FileType.VIDEO, FileType.AUDIO, FileType.DOCUMENT}:
  772. file_content = file_manager.to_prompt_message_content(
  773. file, image_detail_config=vision_detail_config
  774. )
  775. file_contents.append(file_content)
  776. if isinstance(segment, FileSegment):
  777. file = segment.value
  778. if file.type in {FileType.IMAGE, FileType.VIDEO, FileType.AUDIO, FileType.DOCUMENT}:
  779. file_content = file_manager.to_prompt_message_content(
  780. file, image_detail_config=vision_detail_config
  781. )
  782. file_contents.append(file_content)
  783. # Create message with text from all segments
  784. plain_text = segment_group.text
  785. if plain_text:
  786. prompt_message = _combine_message_content_with_role(
  787. contents=[TextPromptMessageContent(data=plain_text)], role=message.role
  788. )
  789. prompt_messages.append(prompt_message)
  790. if file_contents:
  791. # Create message with image contents
  792. prompt_message = _combine_message_content_with_role(contents=file_contents, role=message.role)
  793. prompt_messages.append(prompt_message)
  794. return prompt_messages
  795. def _calculate_rest_token(
  796. *, prompt_messages: list[PromptMessage], model_config: ModelConfigWithCredentialsEntity
  797. ) -> int:
  798. rest_tokens = 2000
  799. model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
  800. if model_context_tokens:
  801. model_instance = ModelInstance(
  802. provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
  803. )
  804. curr_message_tokens = model_instance.get_llm_num_tokens(prompt_messages)
  805. max_tokens = 0
  806. for parameter_rule in model_config.model_schema.parameter_rules:
  807. if parameter_rule.name == "max_tokens" or (
  808. parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
  809. ):
  810. max_tokens = (
  811. model_config.parameters.get(parameter_rule.name)
  812. or model_config.parameters.get(str(parameter_rule.use_template))
  813. or 0
  814. )
  815. rest_tokens = model_context_tokens - max_tokens - curr_message_tokens
  816. rest_tokens = max(rest_tokens, 0)
  817. return rest_tokens
  818. def _handle_memory_chat_mode(
  819. *,
  820. memory: TokenBufferMemory | None,
  821. memory_config: MemoryConfig | None,
  822. model_config: ModelConfigWithCredentialsEntity,
  823. ) -> Sequence[PromptMessage]:
  824. memory_messages = []
  825. # Get messages from memory for chat model
  826. if memory and memory_config:
  827. rest_tokens = _calculate_rest_token(prompt_messages=[], model_config=model_config)
  828. memory_messages = memory.get_history_prompt_messages(
  829. max_token_limit=rest_tokens,
  830. message_limit=memory_config.window.size if memory_config.window.enabled else None,
  831. )
  832. return memory_messages
  833. def _handle_memory_completion_mode(
  834. *,
  835. memory: TokenBufferMemory | None,
  836. memory_config: MemoryConfig | None,
  837. model_config: ModelConfigWithCredentialsEntity,
  838. ) -> str:
  839. memory_text = ""
  840. # Get history text from memory for completion model
  841. if memory and memory_config:
  842. rest_tokens = _calculate_rest_token(prompt_messages=[], model_config=model_config)
  843. if not memory_config.role_prefix:
  844. raise MemoryRolePrefixRequiredError("Memory role prefix is required for completion model.")
  845. memory_text = memory.get_history_prompt_text(
  846. max_token_limit=rest_tokens,
  847. message_limit=memory_config.window.size if memory_config.window.enabled else None,
  848. human_prefix=memory_config.role_prefix.user,
  849. ai_prefix=memory_config.role_prefix.assistant,
  850. )
  851. return memory_text
  852. def _handle_completion_template(
  853. *,
  854. template: LLMNodeCompletionModelPromptTemplate,
  855. context: Optional[str],
  856. jinja2_variables: Sequence[VariableSelector],
  857. variable_pool: VariablePool,
  858. ) -> Sequence[PromptMessage]:
  859. """Handle completion template processing outside of LLMNode class.
  860. Args:
  861. template: The completion model prompt template
  862. context: Optional context string
  863. jinja2_variables: Variables for jinja2 template rendering
  864. variable_pool: Variable pool for template conversion
  865. Returns:
  866. Sequence of prompt messages
  867. """
  868. prompt_messages = []
  869. if template.edition_type == "jinja2":
  870. result_text = _render_jinja2_message(
  871. template=template.jinja2_text or "",
  872. jinjia2_variables=jinja2_variables,
  873. variable_pool=variable_pool,
  874. )
  875. else:
  876. if context:
  877. template_text = template.text.replace("{#context#}", context)
  878. else:
  879. template_text = template.text
  880. result_text = variable_pool.convert_template(template_text).text
  881. prompt_message = _combine_message_content_with_role(
  882. contents=[TextPromptMessageContent(data=result_text)], role=PromptMessageRole.USER
  883. )
  884. prompt_messages.append(prompt_message)
  885. return prompt_messages