dataset.py 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167
  1. from flask import request
  2. from flask_restful import marshal, reqparse # type: ignore
  3. from werkzeug.exceptions import NotFound
  4. import services.dataset_service
  5. from controllers.service_api import api
  6. from controllers.service_api.dataset.error import DatasetInUseError, DatasetNameDuplicateError
  7. from controllers.service_api.wraps import DatasetApiResource
  8. from core.model_runtime.entities.model_entities import ModelType
  9. from core.provider_manager import ProviderManager
  10. from fields.dataset_fields import dataset_detail_fields
  11. from libs.login import current_user
  12. from models.dataset import Dataset, DatasetPermissionEnum
  13. from services.dataset_service import DatasetService
  14. def _validate_name(name):
  15. if not name or len(name) < 1 or len(name) > 40:
  16. raise ValueError("Name must be between 1 to 40 characters.")
  17. return name
  18. class DatasetListApi(DatasetApiResource):
  19. """Resource for datasets."""
  20. def get(self, tenant_id):
  21. """Resource for getting datasets."""
  22. page = request.args.get("page", default=1, type=int)
  23. limit = request.args.get("limit", default=20, type=int)
  24. # provider = request.args.get("provider", default="vendor")
  25. search = request.args.get("keyword", default=None, type=str)
  26. tag_ids = request.args.getlist("tag_ids")
  27. include_all = request.args.get("include_all", default="false").lower() == "true"
  28. datasets, total = DatasetService.get_datasets(
  29. page, limit, tenant_id, current_user, search, tag_ids, include_all
  30. )
  31. # check embedding setting
  32. provider_manager = ProviderManager()
  33. configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)
  34. embedding_models = configurations.get_models(model_type=ModelType.TEXT_EMBEDDING, only_active=True)
  35. model_names = []
  36. for embedding_model in embedding_models:
  37. model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
  38. data = marshal(datasets, dataset_detail_fields)
  39. for item in data:
  40. if item["indexing_technique"] == "high_quality":
  41. item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
  42. if item_model in model_names:
  43. item["embedding_available"] = True
  44. else:
  45. item["embedding_available"] = False
  46. else:
  47. item["embedding_available"] = True
  48. response = {"data": data, "has_more": len(datasets) == limit, "limit": limit, "total": total, "page": page}
  49. return response, 200
  50. def post(self, tenant_id):
  51. """Resource for creating datasets."""
  52. parser = reqparse.RequestParser()
  53. parser.add_argument(
  54. "name",
  55. nullable=False,
  56. required=True,
  57. help="type is required. Name must be between 1 to 40 characters.",
  58. type=_validate_name,
  59. )
  60. parser.add_argument(
  61. "description",
  62. type=str,
  63. nullable=True,
  64. required=False,
  65. default="",
  66. )
  67. parser.add_argument(
  68. "indexing_technique",
  69. type=str,
  70. location="json",
  71. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  72. help="Invalid indexing technique.",
  73. )
  74. parser.add_argument(
  75. "permission",
  76. type=str,
  77. location="json",
  78. choices=(DatasetPermissionEnum.ONLY_ME, DatasetPermissionEnum.ALL_TEAM, DatasetPermissionEnum.PARTIAL_TEAM),
  79. help="Invalid permission.",
  80. required=False,
  81. nullable=False,
  82. )
  83. parser.add_argument(
  84. "external_knowledge_api_id",
  85. type=str,
  86. nullable=True,
  87. required=False,
  88. default="_validate_name",
  89. )
  90. parser.add_argument(
  91. "provider",
  92. type=str,
  93. nullable=True,
  94. required=False,
  95. default="vendor",
  96. )
  97. parser.add_argument(
  98. "external_knowledge_id",
  99. type=str,
  100. nullable=True,
  101. required=False,
  102. )
  103. args = parser.parse_args()
  104. try:
  105. dataset = DatasetService.create_empty_dataset(
  106. tenant_id=tenant_id,
  107. name=args["name"],
  108. description=args["description"],
  109. indexing_technique=args["indexing_technique"],
  110. account=current_user,
  111. permission=args["permission"],
  112. provider=args["provider"],
  113. external_knowledge_api_id=args["external_knowledge_api_id"],
  114. external_knowledge_id=args["external_knowledge_id"],
  115. )
  116. except services.errors.dataset.DatasetNameDuplicateError:
  117. raise DatasetNameDuplicateError()
  118. return marshal(dataset, dataset_detail_fields), 200
  119. class DatasetApi(DatasetApiResource):
  120. """Resource for dataset."""
  121. def delete(self, _, dataset_id):
  122. """
  123. Deletes a dataset given its ID.
  124. Args:
  125. dataset_id (UUID): The ID of the dataset to be deleted.
  126. Returns:
  127. dict: A dictionary with a key 'result' and a value 'success'
  128. if the dataset was successfully deleted. Omitted in HTTP response.
  129. int: HTTP status code 204 indicating that the operation was successful.
  130. Raises:
  131. NotFound: If the dataset with the given ID does not exist.
  132. """
  133. dataset_id_str = str(dataset_id)
  134. try:
  135. if DatasetService.delete_dataset(dataset_id_str, current_user):
  136. return {"result": "success"}, 204
  137. else:
  138. raise NotFound("Dataset not found.")
  139. except services.errors.dataset.DatasetInUseError:
  140. raise DatasetInUseError()
  141. api.add_resource(DatasetListApi, "/datasets")
  142. api.add_resource(DatasetApi, "/datasets/<uuid:dataset_id>")