| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275 | 
							- import datetime
 
- import json
 
- import logging
 
- import random
 
- import time
 
- import uuid
 
- from typing import Optional, cast
 
- from flask import current_app
 
- from flask_login import current_user
 
- from sqlalchemy import func
 
- from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
 
- from core.model_manager import ModelManager
 
- from core.model_runtime.entities.model_entities import ModelType
 
- from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
 
- from core.rag.datasource.keyword.keyword_factory import Keyword
 
- from core.rag.models.document import Document as RAGDocument
 
- from events.dataset_event import dataset_was_deleted
 
- from events.document_event import document_was_deleted
 
- from extensions.ext_database import db
 
- from extensions.ext_redis import redis_client
 
- from libs import helper
 
- from models.account import Account
 
- from models.dataset import (
 
-     AppDatasetJoin,
 
-     Dataset,
 
-     DatasetCollectionBinding,
 
-     DatasetProcessRule,
 
-     DatasetQuery,
 
-     Document,
 
-     DocumentSegment,
 
- )
 
- from models.model import UploadFile
 
- from models.source import DataSourceBinding
 
- from services.errors.account import NoPermissionError
 
- from services.errors.dataset import DatasetNameDuplicateError
 
- from services.errors.document import DocumentIndexingError
 
- from services.errors.file import FileNotExistsError
 
- from services.feature_service import FeatureModel, FeatureService
 
- from services.vector_service import VectorService
 
- from tasks.clean_notion_document_task import clean_notion_document_task
 
- from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
 
- from tasks.delete_segment_from_index_task import delete_segment_from_index_task
 
- from tasks.document_indexing_task import document_indexing_task
 
- from tasks.document_indexing_update_task import document_indexing_update_task
 
- from tasks.recover_document_indexing_task import recover_document_indexing_task
 
- class DatasetService:
 
-     @staticmethod
 
-     def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
 
-         if user:
 
-             permission_filter = db.or_(Dataset.created_by == user.id,
 
-                                        Dataset.permission == 'all_team_members')
 
-         else:
 
-             permission_filter = Dataset.permission == 'all_team_members'
 
-         datasets = Dataset.query.filter(
 
-             db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
 
-             .order_by(Dataset.created_at.desc()) \
 
-             .paginate(
 
-             page=page,
 
-             per_page=per_page,
 
-             max_per_page=100,
 
-             error_out=False
 
-         )
 
-         return datasets.items, datasets.total
 
-     @staticmethod
 
-     def get_process_rules(dataset_id):
 
-         # get the latest process rule
 
-         dataset_process_rule = db.session.query(DatasetProcessRule). \
 
-             filter(DatasetProcessRule.dataset_id == dataset_id). \
 
-             order_by(DatasetProcessRule.created_at.desc()). \
 
-             limit(1). \
 
-             one_or_none()
 
-         if dataset_process_rule:
 
-             mode = dataset_process_rule.mode
 
-             rules = dataset_process_rule.rules_dict
 
-         else:
 
-             mode = DocumentService.DEFAULT_RULES['mode']
 
-             rules = DocumentService.DEFAULT_RULES['rules']
 
-         return {
 
-             'mode': mode,
 
-             'rules': rules
 
-         }
 
-     @staticmethod
 
-     def get_datasets_by_ids(ids, tenant_id):
 
-         datasets = Dataset.query.filter(Dataset.id.in_(ids),
 
-                                         Dataset.tenant_id == tenant_id).paginate(
 
-             page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
 
-         return datasets.items, datasets.total
 
-     @staticmethod
 
-     def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
 
-         # check if dataset name already exists
 
-         if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
 
-             raise DatasetNameDuplicateError(
 
-                 f'Dataset with name {name} already exists.')
 
-         embedding_model = None
 
-         if indexing_technique == 'high_quality':
 
-             model_manager = ModelManager()
 
-             embedding_model = model_manager.get_default_model_instance(
 
-                 tenant_id=tenant_id,
 
-                 model_type=ModelType.TEXT_EMBEDDING
 
-             )
 
-         dataset = Dataset(name=name, indexing_technique=indexing_technique)
 
-         # dataset = Dataset(name=name, provider=provider, config=config)
 
-         dataset.created_by = account.id
 
-         dataset.updated_by = account.id
 
-         dataset.tenant_id = tenant_id
 
-         dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
 
-         dataset.embedding_model = embedding_model.model if embedding_model else None
 
-         db.session.add(dataset)
 
-         db.session.commit()
 
-         return dataset
 
-     @staticmethod
 
-     def get_dataset(dataset_id):
 
-         dataset = Dataset.query.filter_by(
 
-             id=dataset_id
 
-         ).first()
 
-         if dataset is None:
 
-             return None
 
-         else:
 
-             return dataset
 
-     @staticmethod
 
-     def check_dataset_model_setting(dataset):
 
-         if dataset.indexing_technique == 'high_quality':
 
-             try:
 
-                 model_manager = ModelManager()
 
-                 model_manager.get_model_instance(
 
-                     tenant_id=dataset.tenant_id,
 
-                     provider=dataset.embedding_model_provider,
 
-                     model_type=ModelType.TEXT_EMBEDDING,
 
-                     model=dataset.embedding_model
 
-                 )
 
-             except LLMBadRequestError:
 
-                 raise ValueError(
 
-                     "No Embedding Model available. Please configure a valid provider "
 
-                     "in the Settings -> Model Provider.")
 
-             except ProviderTokenNotInitError as ex:
 
-                 raise ValueError(f"The dataset in unavailable, due to: "
 
-                                  f"{ex.description}")
 
-     @staticmethod
 
-     def update_dataset(dataset_id, data, user):
 
-         filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
 
-         dataset = DatasetService.get_dataset(dataset_id)
 
-         DatasetService.check_dataset_permission(dataset, user)
 
-         action = None
 
-         if dataset.indexing_technique != data['indexing_technique']:
 
-             # if update indexing_technique
 
-             if data['indexing_technique'] == 'economy':
 
-                 action = 'remove'
 
-                 filtered_data['embedding_model'] = None
 
-                 filtered_data['embedding_model_provider'] = None
 
-                 filtered_data['collection_binding_id'] = None
 
-             elif data['indexing_technique'] == 'high_quality':
 
-                 action = 'add'
 
-                 # get embedding model setting
 
-                 try:
 
-                     model_manager = ModelManager()
 
-                     embedding_model = model_manager.get_default_model_instance(
 
-                         tenant_id=current_user.current_tenant_id,
 
-                         model_type=ModelType.TEXT_EMBEDDING
 
-                     )
 
-                     filtered_data['embedding_model'] = embedding_model.model
 
-                     filtered_data['embedding_model_provider'] = embedding_model.provider
 
-                     dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
 
-                         embedding_model.provider,
 
-                         embedding_model.model
 
-                     )
 
-                     filtered_data['collection_binding_id'] = dataset_collection_binding.id
 
-                 except LLMBadRequestError:
 
-                     raise ValueError(
 
-                         "No Embedding Model available. Please configure a valid provider "
 
-                         "in the Settings -> Model Provider.")
 
-                 except ProviderTokenNotInitError as ex:
 
-                     raise ValueError(ex.description)
 
-         filtered_data['updated_by'] = user.id
 
-         filtered_data['updated_at'] = datetime.datetime.now()
 
-         # update Retrieval model
 
-         filtered_data['retrieval_model'] = data['retrieval_model']
 
-         dataset.query.filter_by(id=dataset_id).update(filtered_data)
 
-         db.session.commit()
 
-         if action:
 
-             deal_dataset_vector_index_task.delay(dataset_id, action)
 
-         return dataset
 
-     @staticmethod
 
-     def delete_dataset(dataset_id, user):
 
-         # todo: cannot delete dataset if it is being processed
 
-         dataset = DatasetService.get_dataset(dataset_id)
 
-         if dataset is None:
 
-             return False
 
-         DatasetService.check_dataset_permission(dataset, user)
 
-         dataset_was_deleted.send(dataset)
 
-         db.session.delete(dataset)
 
-         db.session.commit()
 
-         return True
 
-     @staticmethod
 
-     def check_dataset_permission(dataset, user):
 
-         if dataset.tenant_id != user.current_tenant_id:
 
-             logging.debug(
 
-                 f'User {user.id} does not have permission to access dataset {dataset.id}')
 
-             raise NoPermissionError(
 
-                 'You do not have permission to access this dataset.')
 
-         if dataset.permission == 'only_me' and dataset.created_by != user.id:
 
-             logging.debug(
 
-                 f'User {user.id} does not have permission to access dataset {dataset.id}')
 
-             raise NoPermissionError(
 
-                 'You do not have permission to access this dataset.')
 
-     @staticmethod
 
-     def get_dataset_queries(dataset_id: str, page: int, per_page: int):
 
-         dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
 
-             .order_by(db.desc(DatasetQuery.created_at)) \
 
-             .paginate(
 
-             page=page, per_page=per_page, max_per_page=100, error_out=False
 
-         )
 
-         return dataset_queries.items, dataset_queries.total
 
-     @staticmethod
 
-     def get_related_apps(dataset_id: str):
 
-         return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
 
-             .order_by(db.desc(AppDatasetJoin.created_at)).all()
 
- class DocumentService:
 
-     DEFAULT_RULES = {
 
-         'mode': 'custom',
 
-         'rules': {
 
-             'pre_processing_rules': [
 
-                 {'id': 'remove_extra_spaces', 'enabled': True},
 
-                 {'id': 'remove_urls_emails', 'enabled': False}
 
-             ],
 
-             'segmentation': {
 
-                 'delimiter': '\n',
 
-                 'max_tokens': 500,
 
-                 'chunk_overlap': 50
 
-             }
 
-         }
 
-     }
 
-     DOCUMENT_METADATA_SCHEMA = {
 
-         "book": {
 
-             "title": str,
 
-             "language": str,
 
-             "author": str,
 
-             "publisher": str,
 
-             "publication_date": str,
 
-             "isbn": str,
 
-             "category": str,
 
-         },
 
-         "web_page": {
 
-             "title": str,
 
-             "url": str,
 
-             "language": str,
 
-             "publish_date": str,
 
-             "author/publisher": str,
 
-             "topic/keywords": str,
 
-             "description": str,
 
-         },
 
-         "paper": {
 
-             "title": str,
 
-             "language": str,
 
-             "author": str,
 
-             "publish_date": str,
 
-             "journal/conference_name": str,
 
-             "volume/issue/page_numbers": str,
 
-             "doi": str,
 
-             "topic/keywords": str,
 
-             "abstract": str,
 
-         },
 
-         "social_media_post": {
 
-             "platform": str,
 
-             "author/username": str,
 
-             "publish_date": str,
 
-             "post_url": str,
 
-             "topic/tags": str,
 
-         },
 
-         "wikipedia_entry": {
 
-             "title": str,
 
-             "language": str,
 
-             "web_page_url": str,
 
-             "last_edit_date": str,
 
-             "editor/contributor": str,
 
-             "summary/introduction": str,
 
-         },
 
-         "personal_document": {
 
-             "title": str,
 
-             "author": str,
 
-             "creation_date": str,
 
-             "last_modified_date": str,
 
-             "document_type": str,
 
-             "tags/category": str,
 
-         },
 
-         "business_document": {
 
-             "title": str,
 
-             "author": str,
 
-             "creation_date": str,
 
-             "last_modified_date": str,
 
-             "document_type": str,
 
-             "department/team": str,
 
-         },
 
-         "im_chat_log": {
 
-             "chat_platform": str,
 
-             "chat_participants/group_name": str,
 
-             "start_date": str,
 
-             "end_date": str,
 
-             "summary": str,
 
-         },
 
-         "synced_from_notion": {
 
-             "title": str,
 
-             "language": str,
 
-             "author/creator": str,
 
-             "creation_date": str,
 
-             "last_modified_date": str,
 
-             "notion_page_link": str,
 
-             "category/tags": str,
 
-             "description": str,
 
-         },
 
-         "synced_from_github": {
 
-             "repository_name": str,
 
-             "repository_description": str,
 
-             "repository_owner/organization": str,
 
-             "code_filename": str,
 
-             "code_file_path": str,
 
-             "programming_language": str,
 
-             "github_link": str,
 
-             "open_source_license": str,
 
-             "commit_date": str,
 
-             "commit_author": str,
 
-         },
 
-         "others": dict
 
-     }
 
-     @staticmethod
 
-     def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
 
-         document = db.session.query(Document).filter(
 
-             Document.id == document_id,
 
-             Document.dataset_id == dataset_id
 
-         ).first()
 
-         return document
 
-     @staticmethod
 
-     def get_document_by_id(document_id: str) -> Optional[Document]:
 
-         document = db.session.query(Document).filter(
 
-             Document.id == document_id
 
-         ).first()
 
-         return document
 
-     @staticmethod
 
-     def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
 
-         documents = db.session.query(Document).filter(
 
-             Document.dataset_id == dataset_id,
 
-             Document.enabled == True
 
-         ).all()
 
-         return documents
 
-     @staticmethod
 
-     def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
 
-         documents = db.session.query(Document).filter(
 
-             Document.batch == batch,
 
-             Document.dataset_id == dataset_id,
 
-             Document.tenant_id == current_user.current_tenant_id
 
-         ).all()
 
-         return documents
 
-     @staticmethod
 
-     def get_document_file_detail(file_id: str):
 
-         file_detail = db.session.query(UploadFile). \
 
-             filter(UploadFile.id == file_id). \
 
-             one_or_none()
 
-         return file_detail
 
-     @staticmethod
 
-     def check_archived(document):
 
-         if document.archived:
 
-             return True
 
-         else:
 
-             return False
 
-     @staticmethod
 
-     def delete_document(document):
 
-         # trigger document_was_deleted signal
 
-         document_was_deleted.send(document.id, dataset_id=document.dataset_id, doc_form=document.doc_form)
 
-         db.session.delete(document)
 
-         db.session.commit()
 
-     @staticmethod
 
-     def pause_document(document):
 
-         if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
 
-             raise DocumentIndexingError()
 
-         # update document to be paused
 
-         document.is_paused = True
 
-         document.paused_by = current_user.id
 
-         document.paused_at = datetime.datetime.utcnow()
 
-         db.session.add(document)
 
-         db.session.commit()
 
-         # set document paused flag
 
-         indexing_cache_key = 'document_{}_is_paused'.format(document.id)
 
-         redis_client.setnx(indexing_cache_key, "True")
 
-     @staticmethod
 
-     def recover_document(document):
 
-         if not document.is_paused:
 
-             raise DocumentIndexingError()
 
-         # update document to be recover
 
-         document.is_paused = False
 
-         document.paused_by = None
 
-         document.paused_at = None
 
-         db.session.add(document)
 
-         db.session.commit()
 
-         # delete paused flag
 
-         indexing_cache_key = 'document_{}_is_paused'.format(document.id)
 
-         redis_client.delete(indexing_cache_key)
 
-         # trigger async task
 
-         recover_document_indexing_task.delay(document.dataset_id, document.id)
 
-     @staticmethod
 
-     def get_documents_position(dataset_id):
 
-         document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
 
-         if document:
 
-             return document.position + 1
 
-         else:
 
-             return 1
 
-     @staticmethod
 
-     def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
 
-                                       account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
 
-                                       created_from: str = 'web'):
 
-         # check document limit
 
-         features = FeatureService.get_features(current_user.current_tenant_id)
 
-         if features.billing.enabled:
 
-             if 'original_document_id' not in document_data or not document_data['original_document_id']:
 
-                 count = 0
 
-                 if document_data["data_source"]["type"] == "upload_file":
 
-                     upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 
-                     count = len(upload_file_list)
 
-                 elif document_data["data_source"]["type"] == "notion_import":
 
-                     notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
 
-                     for notion_info in notion_info_list:
 
-                         count = count + len(notion_info['pages'])
 
-                 batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
 
-                 if count > batch_upload_limit:
 
-                     raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
 
-                 DocumentService.check_documents_upload_quota(count, features)
 
-         # if dataset is empty, update dataset data_source_type
 
-         if not dataset.data_source_type:
 
-             dataset.data_source_type = document_data["data_source"]["type"]
 
-         if not dataset.indexing_technique:
 
-             if 'indexing_technique' not in document_data \
 
-                     or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
 
-                 raise ValueError("Indexing technique is required")
 
-             dataset.indexing_technique = document_data["indexing_technique"]
 
-             if document_data["indexing_technique"] == 'high_quality':
 
-                 model_manager = ModelManager()
 
-                 embedding_model = model_manager.get_default_model_instance(
 
-                     tenant_id=current_user.current_tenant_id,
 
-                     model_type=ModelType.TEXT_EMBEDDING
 
-                 )
 
-                 dataset.embedding_model = embedding_model.model
 
-                 dataset.embedding_model_provider = embedding_model.provider
 
-                 dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
 
-                     embedding_model.provider,
 
-                     embedding_model.model
 
-                 )
 
-                 dataset.collection_binding_id = dataset_collection_binding.id
 
-                 if not dataset.retrieval_model:
 
-                     default_retrieval_model = {
 
-                         'search_method': 'semantic_search',
 
-                         'reranking_enable': False,
 
-                         'reranking_model': {
 
-                             'reranking_provider_name': '',
 
-                             'reranking_model_name': ''
 
-                         },
 
-                         'top_k': 2,
 
-                         'score_threshold_enabled': False
 
-                     }
 
-                     dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
 
-                         'retrieval_model') else default_retrieval_model
 
-         documents = []
 
-         batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
 
-         if 'original_document_id' in document_data and document_data["original_document_id"]:
 
-             document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
 
-             documents.append(document)
 
-         else:
 
-             # save process rule
 
-             if not dataset_process_rule:
 
-                 process_rule = document_data["process_rule"]
 
-                 if process_rule["mode"] == "custom":
 
-                     dataset_process_rule = DatasetProcessRule(
 
-                         dataset_id=dataset.id,
 
-                         mode=process_rule["mode"],
 
-                         rules=json.dumps(process_rule["rules"]),
 
-                         created_by=account.id
 
-                     )
 
-                 elif process_rule["mode"] == "automatic":
 
-                     dataset_process_rule = DatasetProcessRule(
 
-                         dataset_id=dataset.id,
 
-                         mode=process_rule["mode"],
 
-                         rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
 
-                         created_by=account.id
 
-                     )
 
-                 db.session.add(dataset_process_rule)
 
-                 db.session.commit()
 
-             position = DocumentService.get_documents_position(dataset.id)
 
-             document_ids = []
 
-             if document_data["data_source"]["type"] == "upload_file":
 
-                 upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 
-                 for file_id in upload_file_list:
 
-                     file = db.session.query(UploadFile).filter(
 
-                         UploadFile.tenant_id == dataset.tenant_id,
 
-                         UploadFile.id == file_id
 
-                     ).first()
 
-                     # raise error if file not found
 
-                     if not file:
 
-                         raise FileNotExistsError()
 
-                     file_name = file.name
 
-                     data_source_info = {
 
-                         "upload_file_id": file_id,
 
-                     }
 
-                     document = DocumentService.build_document(dataset, dataset_process_rule.id,
 
-                                                               document_data["data_source"]["type"],
 
-                                                               document_data["doc_form"],
 
-                                                               document_data["doc_language"],
 
-                                                               data_source_info, created_from, position,
 
-                                                               account, file_name, batch)
 
-                     db.session.add(document)
 
-                     db.session.flush()
 
-                     document_ids.append(document.id)
 
-                     documents.append(document)
 
-                     position += 1
 
-             elif document_data["data_source"]["type"] == "notion_import":
 
-                 notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
 
-                 exist_page_ids = []
 
-                 exist_document = dict()
 
-                 documents = Document.query.filter_by(
 
-                     dataset_id=dataset.id,
 
-                     tenant_id=current_user.current_tenant_id,
 
-                     data_source_type='notion_import',
 
-                     enabled=True
 
-                 ).all()
 
-                 if documents:
 
-                     for document in documents:
 
-                         data_source_info = json.loads(document.data_source_info)
 
-                         exist_page_ids.append(data_source_info['notion_page_id'])
 
-                         exist_document[data_source_info['notion_page_id']] = document.id
 
-                 for notion_info in notion_info_list:
 
-                     workspace_id = notion_info['workspace_id']
 
-                     data_source_binding = DataSourceBinding.query.filter(
 
-                         db.and_(
 
-                             DataSourceBinding.tenant_id == current_user.current_tenant_id,
 
-                             DataSourceBinding.provider == 'notion',
 
-                             DataSourceBinding.disabled == False,
 
-                             DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
 
-                         )
 
-                     ).first()
 
-                     if not data_source_binding:
 
-                         raise ValueError('Data source binding not found.')
 
-                     for page in notion_info['pages']:
 
-                         if page['page_id'] not in exist_page_ids:
 
-                             data_source_info = {
 
-                                 "notion_workspace_id": workspace_id,
 
-                                 "notion_page_id": page['page_id'],
 
-                                 "notion_page_icon": page['page_icon'],
 
-                                 "type": page['type']
 
-                             }
 
-                             document = DocumentService.build_document(dataset, dataset_process_rule.id,
 
-                                                                       document_data["data_source"]["type"],
 
-                                                                       document_data["doc_form"],
 
-                                                                       document_data["doc_language"],
 
-                                                                       data_source_info, created_from, position,
 
-                                                                       account, page['page_name'], batch)
 
-                             db.session.add(document)
 
-                             db.session.flush()
 
-                             document_ids.append(document.id)
 
-                             documents.append(document)
 
-                             position += 1
 
-                         else:
 
-                             exist_document.pop(page['page_id'])
 
-                 # delete not selected documents
 
-                 if len(exist_document) > 0:
 
-                     clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
 
-             db.session.commit()
 
-             # trigger async task
 
-             document_indexing_task.delay(dataset.id, document_ids)
 
-         return documents, batch
 
-     @staticmethod
 
-     def check_documents_upload_quota(count: int, features: FeatureModel):
 
-         can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
 
-         if count > can_upload_size:
 
-             raise ValueError(f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.')
 
-     @staticmethod
 
-     def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
 
-                        document_language: str, data_source_info: dict, created_from: str, position: int,
 
-                        account: Account,
 
-                        name: str, batch: str):
 
-         document = Document(
 
-             tenant_id=dataset.tenant_id,
 
-             dataset_id=dataset.id,
 
-             position=position,
 
-             data_source_type=data_source_type,
 
-             data_source_info=json.dumps(data_source_info),
 
-             dataset_process_rule_id=process_rule_id,
 
-             batch=batch,
 
-             name=name,
 
-             created_from=created_from,
 
-             created_by=account.id,
 
-             doc_form=document_form,
 
-             doc_language=document_language
 
-         )
 
-         return document
 
-     @staticmethod
 
-     def get_tenant_documents_count():
 
-         documents_count = Document.query.filter(Document.completed_at.isnot(None),
 
-                                                 Document.enabled == True,
 
-                                                 Document.archived == False,
 
-                                                 Document.tenant_id == current_user.current_tenant_id).count()
 
-         return documents_count
 
-     @staticmethod
 
-     def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
 
-                                         account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
 
-                                         created_from: str = 'web'):
 
-         DatasetService.check_dataset_model_setting(dataset)
 
-         document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
 
-         if document.display_status != 'available':
 
-             raise ValueError("Document is not available")
 
-         # update document name
 
-         if 'name' in document_data and document_data['name']:
 
-             document.name = document_data['name']
 
-         # save process rule
 
-         if 'process_rule' in document_data and document_data['process_rule']:
 
-             process_rule = document_data["process_rule"]
 
-             if process_rule["mode"] == "custom":
 
-                 dataset_process_rule = DatasetProcessRule(
 
-                     dataset_id=dataset.id,
 
-                     mode=process_rule["mode"],
 
-                     rules=json.dumps(process_rule["rules"]),
 
-                     created_by=account.id
 
-                 )
 
-             elif process_rule["mode"] == "automatic":
 
-                 dataset_process_rule = DatasetProcessRule(
 
-                     dataset_id=dataset.id,
 
-                     mode=process_rule["mode"],
 
-                     rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
 
-                     created_by=account.id
 
-                 )
 
-             db.session.add(dataset_process_rule)
 
-             db.session.commit()
 
-             document.dataset_process_rule_id = dataset_process_rule.id
 
-         # update document data source
 
-         if 'data_source' in document_data and document_data['data_source']:
 
-             file_name = ''
 
-             data_source_info = {}
 
-             if document_data["data_source"]["type"] == "upload_file":
 
-                 upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 
-                 for file_id in upload_file_list:
 
-                     file = db.session.query(UploadFile).filter(
 
-                         UploadFile.tenant_id == dataset.tenant_id,
 
-                         UploadFile.id == file_id
 
-                     ).first()
 
-                     # raise error if file not found
 
-                     if not file:
 
-                         raise FileNotExistsError()
 
-                     file_name = file.name
 
-                     data_source_info = {
 
-                         "upload_file_id": file_id,
 
-                     }
 
-             elif document_data["data_source"]["type"] == "notion_import":
 
-                 notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
 
-                 for notion_info in notion_info_list:
 
-                     workspace_id = notion_info['workspace_id']
 
-                     data_source_binding = DataSourceBinding.query.filter(
 
-                         db.and_(
 
-                             DataSourceBinding.tenant_id == current_user.current_tenant_id,
 
-                             DataSourceBinding.provider == 'notion',
 
-                             DataSourceBinding.disabled == False,
 
-                             DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
 
-                         )
 
-                     ).first()
 
-                     if not data_source_binding:
 
-                         raise ValueError('Data source binding not found.')
 
-                     for page in notion_info['pages']:
 
-                         data_source_info = {
 
-                             "notion_workspace_id": workspace_id,
 
-                             "notion_page_id": page['page_id'],
 
-                             "notion_page_icon": page['page_icon'],
 
-                             "type": page['type']
 
-                         }
 
-             document.data_source_type = document_data["data_source"]["type"]
 
-             document.data_source_info = json.dumps(data_source_info)
 
-             document.name = file_name
 
-         # update document to be waiting
 
-         document.indexing_status = 'waiting'
 
-         document.completed_at = None
 
-         document.processing_started_at = None
 
-         document.parsing_completed_at = None
 
-         document.cleaning_completed_at = None
 
-         document.splitting_completed_at = None
 
-         document.updated_at = datetime.datetime.utcnow()
 
-         document.created_from = created_from
 
-         document.doc_form = document_data['doc_form']
 
-         db.session.add(document)
 
-         db.session.commit()
 
-         # update document segment
 
-         update_params = {
 
-             DocumentSegment.status: 're_segment'
 
-         }
 
-         DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
 
-         db.session.commit()
 
-         # trigger async task
 
-         document_indexing_update_task.delay(document.dataset_id, document.id)
 
-         return document
 
-     @staticmethod
 
-     def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
 
-         features = FeatureService.get_features(current_user.current_tenant_id)
 
-         if features.billing.enabled:
 
-             count = 0
 
-             if document_data["data_source"]["type"] == "upload_file":
 
-                 upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 
-                 count = len(upload_file_list)
 
-             elif document_data["data_source"]["type"] == "notion_import":
 
-                 notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
 
-                 for notion_info in notion_info_list:
 
-                     count = count + len(notion_info['pages'])
 
-             batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
 
-             if count > batch_upload_limit:
 
-                 raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
 
-             DocumentService.check_documents_upload_quota(count, features)
 
-         embedding_model = None
 
-         dataset_collection_binding_id = None
 
-         retrieval_model = None
 
-         if document_data['indexing_technique'] == 'high_quality':
 
-             model_manager = ModelManager()
 
-             embedding_model = model_manager.get_default_model_instance(
 
-                 tenant_id=current_user.current_tenant_id,
 
-                 model_type=ModelType.TEXT_EMBEDDING
 
-             )
 
-             dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
 
-                 embedding_model.provider,
 
-                 embedding_model.model
 
-             )
 
-             dataset_collection_binding_id = dataset_collection_binding.id
 
-             if 'retrieval_model' in document_data and document_data['retrieval_model']:
 
-                 retrieval_model = document_data['retrieval_model']
 
-             else:
 
-                 default_retrieval_model = {
 
-                     'search_method': 'semantic_search',
 
-                     'reranking_enable': False,
 
-                     'reranking_model': {
 
-                         'reranking_provider_name': '',
 
-                         'reranking_model_name': ''
 
-                     },
 
-                     'top_k': 2,
 
-                     'score_threshold_enabled': False
 
-                 }
 
-                 retrieval_model = default_retrieval_model
 
-         # save dataset
 
-         dataset = Dataset(
 
-             tenant_id=tenant_id,
 
-             name='',
 
-             data_source_type=document_data["data_source"]["type"],
 
-             indexing_technique=document_data["indexing_technique"],
 
-             created_by=account.id,
 
-             embedding_model=embedding_model.model if embedding_model else None,
 
-             embedding_model_provider=embedding_model.provider if embedding_model else None,
 
-             collection_binding_id=dataset_collection_binding_id,
 
-             retrieval_model=retrieval_model
 
-         )
 
-         db.session.add(dataset)
 
-         db.session.flush()
 
-         documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
 
-         cut_length = 18
 
-         cut_name = documents[0].name[:cut_length]
 
-         dataset.name = cut_name + '...'
 
-         dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
 
-         db.session.commit()
 
-         return dataset, documents, batch
 
-     @classmethod
 
-     def document_create_args_validate(cls, args: dict):
 
-         if 'original_document_id' not in args or not args['original_document_id']:
 
-             DocumentService.data_source_args_validate(args)
 
-             DocumentService.process_rule_args_validate(args)
 
-         else:
 
-             if ('data_source' not in args and not args['data_source']) \
 
-                     and ('process_rule' not in args and not args['process_rule']):
 
-                 raise ValueError("Data source or Process rule is required")
 
-             else:
 
-                 if 'data_source' in args and args['data_source']:
 
-                     DocumentService.data_source_args_validate(args)
 
-                 if 'process_rule' in args and args['process_rule']:
 
-                     DocumentService.process_rule_args_validate(args)
 
-     @classmethod
 
-     def data_source_args_validate(cls, args: dict):
 
-         if 'data_source' not in args or not args['data_source']:
 
-             raise ValueError("Data source is required")
 
-         if not isinstance(args['data_source'], dict):
 
-             raise ValueError("Data source is invalid")
 
-         if 'type' not in args['data_source'] or not args['data_source']['type']:
 
-             raise ValueError("Data source type is required")
 
-         if args['data_source']['type'] not in Document.DATA_SOURCES:
 
-             raise ValueError("Data source type is invalid")
 
-         if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
 
-             raise ValueError("Data source info is required")
 
-         if args['data_source']['type'] == 'upload_file':
 
-             if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
 
-                 'file_info_list']:
 
-                 raise ValueError("File source info is required")
 
-         if args['data_source']['type'] == 'notion_import':
 
-             if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
 
-                 'notion_info_list']:
 
-                 raise ValueError("Notion source info is required")
 
-     @classmethod
 
-     def process_rule_args_validate(cls, args: dict):
 
-         if 'process_rule' not in args or not args['process_rule']:
 
-             raise ValueError("Process rule is required")
 
-         if not isinstance(args['process_rule'], dict):
 
-             raise ValueError("Process rule is invalid")
 
-         if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
 
-             raise ValueError("Process rule mode is required")
 
-         if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
 
-             raise ValueError("Process rule mode is invalid")
 
-         if args['process_rule']['mode'] == 'automatic':
 
-             args['process_rule']['rules'] = {}
 
-         else:
 
-             if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
 
-                 raise ValueError("Process rule rules is required")
 
-             if not isinstance(args['process_rule']['rules'], dict):
 
-                 raise ValueError("Process rule rules is invalid")
 
-             if 'pre_processing_rules' not in args['process_rule']['rules'] \
 
-                     or args['process_rule']['rules']['pre_processing_rules'] is None:
 
-                 raise ValueError("Process rule pre_processing_rules is required")
 
-             if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
 
-                 raise ValueError("Process rule pre_processing_rules is invalid")
 
-             unique_pre_processing_rule_dicts = {}
 
-             for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
 
-                 if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
 
-                     raise ValueError("Process rule pre_processing_rules id is required")
 
-                 if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
 
-                     raise ValueError("Process rule pre_processing_rules id is invalid")
 
-                 if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
 
-                     raise ValueError("Process rule pre_processing_rules enabled is required")
 
-                 if not isinstance(pre_processing_rule['enabled'], bool):
 
-                     raise ValueError("Process rule pre_processing_rules enabled is invalid")
 
-                 unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
 
-             args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
 
-             if 'segmentation' not in args['process_rule']['rules'] \
 
-                     or args['process_rule']['rules']['segmentation'] is None:
 
-                 raise ValueError("Process rule segmentation is required")
 
-             if not isinstance(args['process_rule']['rules']['segmentation'], dict):
 
-                 raise ValueError("Process rule segmentation is invalid")
 
-             if 'separator' not in args['process_rule']['rules']['segmentation'] \
 
-                     or not args['process_rule']['rules']['segmentation']['separator']:
 
-                 raise ValueError("Process rule segmentation separator is required")
 
-             if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
 
-                 raise ValueError("Process rule segmentation separator is invalid")
 
-             if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
 
-                     or not args['process_rule']['rules']['segmentation']['max_tokens']:
 
-                 raise ValueError("Process rule segmentation max_tokens is required")
 
-             if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
 
-                 raise ValueError("Process rule segmentation max_tokens is invalid")
 
-     @classmethod
 
-     def estimate_args_validate(cls, args: dict):
 
-         if 'info_list' not in args or not args['info_list']:
 
-             raise ValueError("Data source info is required")
 
-         if not isinstance(args['info_list'], dict):
 
-             raise ValueError("Data info is invalid")
 
-         if 'process_rule' not in args or not args['process_rule']:
 
-             raise ValueError("Process rule is required")
 
-         if not isinstance(args['process_rule'], dict):
 
-             raise ValueError("Process rule is invalid")
 
-         if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
 
-             raise ValueError("Process rule mode is required")
 
-         if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
 
-             raise ValueError("Process rule mode is invalid")
 
-         if args['process_rule']['mode'] == 'automatic':
 
-             args['process_rule']['rules'] = {}
 
-         else:
 
-             if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
 
-                 raise ValueError("Process rule rules is required")
 
-             if not isinstance(args['process_rule']['rules'], dict):
 
-                 raise ValueError("Process rule rules is invalid")
 
-             if 'pre_processing_rules' not in args['process_rule']['rules'] \
 
-                     or args['process_rule']['rules']['pre_processing_rules'] is None:
 
-                 raise ValueError("Process rule pre_processing_rules is required")
 
-             if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
 
-                 raise ValueError("Process rule pre_processing_rules is invalid")
 
-             unique_pre_processing_rule_dicts = {}
 
-             for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
 
-                 if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
 
-                     raise ValueError("Process rule pre_processing_rules id is required")
 
-                 if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
 
-                     raise ValueError("Process rule pre_processing_rules id is invalid")
 
-                 if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
 
-                     raise ValueError("Process rule pre_processing_rules enabled is required")
 
-                 if not isinstance(pre_processing_rule['enabled'], bool):
 
-                     raise ValueError("Process rule pre_processing_rules enabled is invalid")
 
-                 unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
 
-             args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
 
-             if 'segmentation' not in args['process_rule']['rules'] \
 
-                     or args['process_rule']['rules']['segmentation'] is None:
 
-                 raise ValueError("Process rule segmentation is required")
 
-             if not isinstance(args['process_rule']['rules']['segmentation'], dict):
 
-                 raise ValueError("Process rule segmentation is invalid")
 
-             if 'separator' not in args['process_rule']['rules']['segmentation'] \
 
-                     or not args['process_rule']['rules']['segmentation']['separator']:
 
-                 raise ValueError("Process rule segmentation separator is required")
 
-             if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
 
-                 raise ValueError("Process rule segmentation separator is invalid")
 
-             if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
 
-                     or not args['process_rule']['rules']['segmentation']['max_tokens']:
 
-                 raise ValueError("Process rule segmentation max_tokens is required")
 
-             if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
 
-                 raise ValueError("Process rule segmentation max_tokens is invalid")
 
- class SegmentService:
 
-     @classmethod
 
-     def segment_create_args_validate(cls, args: dict, document: Document):
 
-         if document.doc_form == 'qa_model':
 
-             if 'answer' not in args or not args['answer']:
 
-                 raise ValueError("Answer is required")
 
-             if not args['answer'].strip():
 
-                 raise ValueError("Answer is empty")
 
-         if 'content' not in args or not args['content'] or not args['content'].strip():
 
-             raise ValueError("Content is empty")
 
-     @classmethod
 
-     def create_segment(cls, args: dict, document: Document, dataset: Dataset):
 
-         content = args['content']
 
-         doc_id = str(uuid.uuid4())
 
-         segment_hash = helper.generate_text_hash(content)
 
-         tokens = 0
 
-         if dataset.indexing_technique == 'high_quality':
 
-             model_manager = ModelManager()
 
-             embedding_model = model_manager.get_model_instance(
 
-                 tenant_id=current_user.current_tenant_id,
 
-                 provider=dataset.embedding_model_provider,
 
-                 model_type=ModelType.TEXT_EMBEDDING,
 
-                 model=dataset.embedding_model
 
-             )
 
-             # calc embedding use tokens
 
-             model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
 
-             tokens = model_type_instance.get_num_tokens(
 
-                 model=embedding_model.model,
 
-                 credentials=embedding_model.credentials,
 
-                 texts=[content]
 
-             )
 
-         max_position = db.session.query(func.max(DocumentSegment.position)).filter(
 
-             DocumentSegment.document_id == document.id
 
-         ).scalar()
 
-         segment_document = DocumentSegment(
 
-             tenant_id=current_user.current_tenant_id,
 
-             dataset_id=document.dataset_id,
 
-             document_id=document.id,
 
-             index_node_id=doc_id,
 
-             index_node_hash=segment_hash,
 
-             position=max_position + 1 if max_position else 1,
 
-             content=content,
 
-             word_count=len(content),
 
-             tokens=tokens,
 
-             status='completed',
 
-             indexing_at=datetime.datetime.utcnow(),
 
-             completed_at=datetime.datetime.utcnow(),
 
-             created_by=current_user.id
 
-         )
 
-         if document.doc_form == 'qa_model':
 
-             segment_document.answer = args['answer']
 
-         db.session.add(segment_document)
 
-         db.session.commit()
 
-         # save vector index
 
-         try:
 
-             VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
 
-         except Exception as e:
 
-             logging.exception("create segment index failed")
 
-             segment_document.enabled = False
 
-             segment_document.disabled_at = datetime.datetime.utcnow()
 
-             segment_document.status = 'error'
 
-             segment_document.error = str(e)
 
-             db.session.commit()
 
-         segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
 
-         return segment
 
-     @classmethod
 
-     def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
 
-         embedding_model = None
 
-         if dataset.indexing_technique == 'high_quality':
 
-             model_manager = ModelManager()
 
-             embedding_model = model_manager.get_model_instance(
 
-                 tenant_id=current_user.current_tenant_id,
 
-                 provider=dataset.embedding_model_provider,
 
-                 model_type=ModelType.TEXT_EMBEDDING,
 
-                 model=dataset.embedding_model
 
-             )
 
-         max_position = db.session.query(func.max(DocumentSegment.position)).filter(
 
-             DocumentSegment.document_id == document.id
 
-         ).scalar()
 
-         pre_segment_data_list = []
 
-         segment_data_list = []
 
-         keywords_list = []
 
-         for segment_item in segments:
 
-             content = segment_item['content']
 
-             doc_id = str(uuid.uuid4())
 
-             segment_hash = helper.generate_text_hash(content)
 
-             tokens = 0
 
-             if dataset.indexing_technique == 'high_quality' and embedding_model:
 
-                 # calc embedding use tokens
 
-                 model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
 
-                 tokens = model_type_instance.get_num_tokens(
 
-                     model=embedding_model.model,
 
-                     credentials=embedding_model.credentials,
 
-                     texts=[content]
 
-                 )
 
-             segment_document = DocumentSegment(
 
-                 tenant_id=current_user.current_tenant_id,
 
-                 dataset_id=document.dataset_id,
 
-                 document_id=document.id,
 
-                 index_node_id=doc_id,
 
-                 index_node_hash=segment_hash,
 
-                 position=max_position + 1 if max_position else 1,
 
-                 content=content,
 
-                 word_count=len(content),
 
-                 tokens=tokens,
 
-                 status='completed',
 
-                 indexing_at=datetime.datetime.utcnow(),
 
-                 completed_at=datetime.datetime.utcnow(),
 
-                 created_by=current_user.id
 
-             )
 
-             if document.doc_form == 'qa_model':
 
-                 segment_document.answer = segment_item['answer']
 
-             db.session.add(segment_document)
 
-             segment_data_list.append(segment_document)
 
-             pre_segment_data_list.append(segment_document)
 
-             keywords_list.append(segment_item['keywords'])
 
-         try:
 
-             # save vector index
 
-             VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
 
-         except Exception as e:
 
-             logging.exception("create segment index failed")
 
-             for segment_document in segment_data_list:
 
-                 segment_document.enabled = False
 
-                 segment_document.disabled_at = datetime.datetime.utcnow()
 
-                 segment_document.status = 'error'
 
-                 segment_document.error = str(e)
 
-         db.session.commit()
 
-         return segment_data_list
 
-     @classmethod
 
-     def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
 
-         indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
 
-         cache_result = redis_client.get(indexing_cache_key)
 
-         if cache_result is not None:
 
-             raise ValueError("Segment is indexing, please try again later")
 
-         try:
 
-             content = args['content']
 
-             if segment.content == content:
 
-                 if document.doc_form == 'qa_model':
 
-                     segment.answer = args['answer']
 
-                 if 'keywords' in args and args['keywords']:
 
-                     segment.keywords = args['keywords']
 
-                 if 'enabled' in args and args['enabled'] is not None:
 
-                     segment.enabled = args['enabled']
 
-                 db.session.add(segment)
 
-                 db.session.commit()
 
-                 # update segment index task
 
-                 if args['keywords']:
 
-                     keyword = Keyword(dataset)
 
-                     keyword.delete_by_ids([segment.index_node_id])
 
-                     document = RAGDocument(
 
-                         page_content=segment.content,
 
-                         metadata={
 
-                             "doc_id": segment.index_node_id,
 
-                             "doc_hash": segment.index_node_hash,
 
-                             "document_id": segment.document_id,
 
-                             "dataset_id": segment.dataset_id,
 
-                         }
 
-                     )
 
-                     keyword.add_texts([document], keywords_list=[args['keywords']])
 
-             else:
 
-                 segment_hash = helper.generate_text_hash(content)
 
-                 tokens = 0
 
-                 if dataset.indexing_technique == 'high_quality':
 
-                     model_manager = ModelManager()
 
-                     embedding_model = model_manager.get_model_instance(
 
-                         tenant_id=current_user.current_tenant_id,
 
-                         provider=dataset.embedding_model_provider,
 
-                         model_type=ModelType.TEXT_EMBEDDING,
 
-                         model=dataset.embedding_model
 
-                     )
 
-                     # calc embedding use tokens
 
-                     model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
 
-                     tokens = model_type_instance.get_num_tokens(
 
-                         model=embedding_model.model,
 
-                         credentials=embedding_model.credentials,
 
-                         texts=[content]
 
-                     )
 
-                 segment.content = content
 
-                 segment.index_node_hash = segment_hash
 
-                 segment.word_count = len(content)
 
-                 segment.tokens = tokens
 
-                 segment.status = 'completed'
 
-                 segment.indexing_at = datetime.datetime.utcnow()
 
-                 segment.completed_at = datetime.datetime.utcnow()
 
-                 segment.updated_by = current_user.id
 
-                 segment.updated_at = datetime.datetime.utcnow()
 
-                 if document.doc_form == 'qa_model':
 
-                     segment.answer = args['answer']
 
-                 db.session.add(segment)
 
-                 db.session.commit()
 
-                 # update segment vector index
 
-                 VectorService.update_segment_vector(args['keywords'], segment, dataset)
 
-         except Exception as e:
 
-             logging.exception("update segment index failed")
 
-             segment.enabled = False
 
-             segment.disabled_at = datetime.datetime.utcnow()
 
-             segment.status = 'error'
 
-             segment.error = str(e)
 
-             db.session.commit()
 
-         segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
 
-         return segment
 
-     @classmethod
 
-     def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
 
-         indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
 
-         cache_result = redis_client.get(indexing_cache_key)
 
-         if cache_result is not None:
 
-             raise ValueError("Segment is deleting.")
 
-         # enabled segment need to delete index
 
-         if segment.enabled:
 
-             # send delete segment index task
 
-             redis_client.setex(indexing_cache_key, 600, 1)
 
-             delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
 
-         db.session.delete(segment)
 
-         db.session.commit()
 
- class DatasetCollectionBindingService:
 
-     @classmethod
 
-     def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
 
-                                        collection_type: str = 'dataset') -> DatasetCollectionBinding:
 
-         dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
 
-             filter(DatasetCollectionBinding.provider_name == provider_name,
 
-                    DatasetCollectionBinding.model_name == model_name,
 
-                    DatasetCollectionBinding.type == collection_type). \
 
-             order_by(DatasetCollectionBinding.created_at). \
 
-             first()
 
-         if not dataset_collection_binding:
 
-             dataset_collection_binding = DatasetCollectionBinding(
 
-                 provider_name=provider_name,
 
-                 model_name=model_name,
 
-                 collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
 
-                 type=collection_type
 
-             )
 
-             db.session.add(dataset_collection_binding)
 
-             db.session.commit()
 
-         return dataset_collection_binding
 
-     @classmethod
 
-     def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
 
-                                                       collection_type: str = 'dataset') -> DatasetCollectionBinding:
 
-         dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
 
-             filter(DatasetCollectionBinding.id == collection_binding_id,
 
-                    DatasetCollectionBinding.type == collection_type). \
 
-             order_by(DatasetCollectionBinding.created_at). \
 
-             first()
 
-         return dataset_collection_binding
 
 
  |