Bowen Liang d94279ae75 fix: casting non-string type value for tool parameter options (#5267) 10 hónapja%!(EXTRA string=óta)
..
.vscode f62f71a81a build: initial support for poetry build tool (#4513) 11 hónapja%!(EXTRA string=óta)
constants 6ccde0452a feat: Added hindi translation i18n (#5240) 10 hónapja%!(EXTRA string=óta)
controllers ba5f8afaa8 Feat/firecrawl data source (#5232) 11 hónapja%!(EXTRA string=óta)
core d94279ae75 fix: casting non-string type value for tool parameter options (#5267) 10 hónapja%!(EXTRA string=óta)
docker c32c177e15 improvement: introduce Super-Linter actions to check style for shell script, dockerfile and yaml files (#1966) 1 éve%!(EXTRA string=óta)
events 0391282b5e fix: initialize site with customized icon and icon_background (#5227) 11 hónapja%!(EXTRA string=óta)
extensions d7fbae286a add aws s3 iam check (#5174) 11 hónapja%!(EXTRA string=óta)
fields 43c19007e0 fix: workspace member's last_active should be last_active_time, but not last_login_time (#4906) 11 hónapja%!(EXTRA string=óta)
libs ba5f8afaa8 Feat/firecrawl data source (#5232) 11 hónapja%!(EXTRA string=óta)
migrations ba5f8afaa8 Feat/firecrawl data source (#5232) 11 hónapja%!(EXTRA string=óta)
models ba5f8afaa8 Feat/firecrawl data source (#5232) 11 hónapja%!(EXTRA string=óta)
schedule 6c4e6bf1d6 Feat/dify rag (#2528) 1 éve%!(EXTRA string=óta)
services ba5f8afaa8 Feat/firecrawl data source (#5232) 11 hónapja%!(EXTRA string=óta)
tasks ba5f8afaa8 Feat/firecrawl data source (#5232) 11 hónapja%!(EXTRA string=óta)
templates 3d92784bd4 fix: email template style (#1914) 1 éve%!(EXTRA string=óta)
tests ba5f8afaa8 Feat/firecrawl data source (#5232) 11 hónapja%!(EXTRA string=óta)
.dockerignore 220f7c81e9 build: fix .dockerignore file (#800) 1 éve%!(EXTRA string=óta)
.env.example ba5f8afaa8 Feat/firecrawl data source (#5232) 11 hónapja%!(EXTRA string=óta)
Dockerfile 55fc46c707 improvement: speed up dependency installation in docker image rebuilds by mounting cache layer (#3218) 1 éve%!(EXTRA string=óta)
README.md 8da035aac6 Update README.md (#5228) 11 hónapja%!(EXTRA string=óta)
app.py 8bca908f15 refactor: config file (#3852) 1 éve%!(EXTRA string=óta)
commands.py 4080f7b8ad feat: support tencent vector db (#3568) 11 hónapja%!(EXTRA string=óta)
config.py d098bdc59b version to 0.6.11 (#5224) 11 hónapja%!(EXTRA string=óta)
poetry.lock 4080f7b8ad feat: support tencent vector db (#3568) 11 hónapja%!(EXTRA string=óta)
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 11 hónapja%!(EXTRA string=óta)
pyproject.toml d098bdc59b version to 0.6.11 (#5224) 11 hónapja%!(EXTRA string=óta)
requirements-dev.txt 23498883d4 chore: skip explicit installing jinja2 as testing dependency (#4845) 11 hónapja%!(EXTRA string=óta)
requirements.txt 4080f7b8ad feat: support tencent vector db (#3568) 11 hónapja%!(EXTRA string=óta)

README.md

Dify Backend API

Usage

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   docker-compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

Using pip can be found below.

  1. Install dependencies
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh

Usage with pip

[!NOTE]
In the next version, we will deprecate pip as the primary package management tool for dify api service, currently Poetry and pip coexist.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   docker-compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
  1. Create environment.

If you use Anaconda, create a new environment and activate it

   conda create --name dify python=3.10
   conda activate dify
  1. Install dependencies
   pip install -r requirements.txt
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   flask db upgrade
  1. Start backend: bash flask run --host 0.0.0.0 --port=5001 --debug
  2. Setup your application by visiting http://localhost:5001/console/api/setup or other apis...
  3. If you need to debug local async processing, please start the worker service. bash celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    pip install -r requirements.txt -r requirements-dev.txt
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    dev/pytest/pytest_all_tests.sh