| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303 | 
							- from collections.abc import Mapping, Sequence
 
- from typing import Optional, cast
 
- from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
 
- from core.file import file_manager
 
- from core.file.models import File
 
- from core.helper.code_executor.jinja2.jinja2_formatter import Jinja2Formatter
 
- from core.memory.token_buffer_memory import TokenBufferMemory
 
- from core.model_runtime.entities import (
 
-     AssistantPromptMessage,
 
-     PromptMessage,
 
-     PromptMessageContent,
 
-     PromptMessageRole,
 
-     SystemPromptMessage,
 
-     TextPromptMessageContent,
 
-     UserPromptMessage,
 
- )
 
- from core.model_runtime.entities.message_entities import ImagePromptMessageContent
 
- from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate, MemoryConfig
 
- from core.prompt.prompt_transform import PromptTransform
 
- from core.prompt.utils.prompt_template_parser import PromptTemplateParser
 
- from core.workflow.entities.variable_pool import VariablePool
 
- class AdvancedPromptTransform(PromptTransform):
 
-     """
 
-     Advanced Prompt Transform for Workflow LLM Node.
 
-     """
 
-     def __init__(
 
-         self,
 
-         with_variable_tmpl: bool = False,
 
-         image_detail_config: ImagePromptMessageContent.DETAIL = ImagePromptMessageContent.DETAIL.LOW,
 
-     ) -> None:
 
-         self.with_variable_tmpl = with_variable_tmpl
 
-         self.image_detail_config = image_detail_config
 
-     def get_prompt(
 
-         self,
 
-         *,
 
-         prompt_template: Sequence[ChatModelMessage] | CompletionModelPromptTemplate,
 
-         inputs: Mapping[str, str],
 
-         query: str,
 
-         files: Sequence[File],
 
-         context: Optional[str],
 
-         memory_config: Optional[MemoryConfig],
 
-         memory: Optional[TokenBufferMemory],
 
-         model_config: ModelConfigWithCredentialsEntity,
 
-         image_detail_config: Optional[ImagePromptMessageContent.DETAIL] = None,
 
-     ) -> list[PromptMessage]:
 
-         prompt_messages = []
 
-         if isinstance(prompt_template, CompletionModelPromptTemplate):
 
-             prompt_messages = self._get_completion_model_prompt_messages(
 
-                 prompt_template=prompt_template,
 
-                 inputs=inputs,
 
-                 query=query,
 
-                 files=files,
 
-                 context=context,
 
-                 memory_config=memory_config,
 
-                 memory=memory,
 
-                 model_config=model_config,
 
-                 image_detail_config=image_detail_config,
 
-             )
 
-         elif isinstance(prompt_template, list) and all(isinstance(item, ChatModelMessage) for item in prompt_template):
 
-             prompt_messages = self._get_chat_model_prompt_messages(
 
-                 prompt_template=prompt_template,
 
-                 inputs=inputs,
 
-                 query=query,
 
-                 files=files,
 
-                 context=context,
 
-                 memory_config=memory_config,
 
-                 memory=memory,
 
-                 model_config=model_config,
 
-                 image_detail_config=image_detail_config,
 
-             )
 
-         return prompt_messages
 
-     def _get_completion_model_prompt_messages(
 
-         self,
 
-         prompt_template: CompletionModelPromptTemplate,
 
-         inputs: Mapping[str, str],
 
-         query: Optional[str],
 
-         files: Sequence[File],
 
-         context: Optional[str],
 
-         memory_config: Optional[MemoryConfig],
 
-         memory: Optional[TokenBufferMemory],
 
-         model_config: ModelConfigWithCredentialsEntity,
 
-         image_detail_config: Optional[ImagePromptMessageContent.DETAIL] = None,
 
-     ) -> list[PromptMessage]:
 
-         """
 
-         Get completion model prompt messages.
 
-         """
 
-         raw_prompt = prompt_template.text
 
-         prompt_messages: list[PromptMessage] = []
 
-         if prompt_template.edition_type == "basic" or not prompt_template.edition_type:
 
-             parser = PromptTemplateParser(template=raw_prompt, with_variable_tmpl=self.with_variable_tmpl)
 
-             prompt_inputs: Mapping[str, str] = {k: inputs[k] for k in parser.variable_keys if k in inputs}
 
-             prompt_inputs = self._set_context_variable(context, parser, prompt_inputs)
 
-             if memory and memory_config and memory_config.role_prefix:
 
-                 role_prefix = memory_config.role_prefix
 
-                 prompt_inputs = self._set_histories_variable(
 
-                     memory=memory,
 
-                     memory_config=memory_config,
 
-                     raw_prompt=raw_prompt,
 
-                     role_prefix=role_prefix,
 
-                     parser=parser,
 
-                     prompt_inputs=prompt_inputs,
 
-                     model_config=model_config,
 
-                 )
 
-             if query:
 
-                 prompt_inputs = self._set_query_variable(query, parser, prompt_inputs)
 
-             prompt = parser.format(prompt_inputs)
 
-         else:
 
-             prompt = raw_prompt
 
-             prompt_inputs = inputs
 
-             prompt = Jinja2Formatter.format(prompt, prompt_inputs)
 
-         if files:
 
-             prompt_message_contents: list[PromptMessageContent] = []
 
-             prompt_message_contents.append(TextPromptMessageContent(data=prompt))
 
-             for file in files:
 
-                 prompt_message_contents.append(
 
-                     file_manager.to_prompt_message_content(file, image_detail_config=image_detail_config)
 
-                 )
 
-             prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
 
-         else:
 
-             prompt_messages.append(UserPromptMessage(content=prompt))
 
-         return prompt_messages
 
-     def _get_chat_model_prompt_messages(
 
-         self,
 
-         prompt_template: list[ChatModelMessage],
 
-         inputs: Mapping[str, str],
 
-         query: Optional[str],
 
-         files: Sequence[File],
 
-         context: Optional[str],
 
-         memory_config: Optional[MemoryConfig],
 
-         memory: Optional[TokenBufferMemory],
 
-         model_config: ModelConfigWithCredentialsEntity,
 
-         image_detail_config: Optional[ImagePromptMessageContent.DETAIL] = None,
 
-     ) -> list[PromptMessage]:
 
-         """
 
-         Get chat model prompt messages.
 
-         """
 
-         prompt_messages: list[PromptMessage] = []
 
-         for prompt_item in prompt_template:
 
-             raw_prompt = prompt_item.text
 
-             if prompt_item.edition_type == "basic" or not prompt_item.edition_type:
 
-                 if self.with_variable_tmpl:
 
-                     vp = VariablePool()
 
-                     for k, v in inputs.items():
 
-                         if k.startswith("#"):
 
-                             vp.add(k[1:-1].split("."), v)
 
-                     raw_prompt = raw_prompt.replace("{{#context#}}", context or "")
 
-                     prompt = vp.convert_template(raw_prompt).text
 
-                 else:
 
-                     parser = PromptTemplateParser(template=raw_prompt, with_variable_tmpl=self.with_variable_tmpl)
 
-                     prompt_inputs: Mapping[str, str] = {k: inputs[k] for k in parser.variable_keys if k in inputs}
 
-                     prompt_inputs = self._set_context_variable(
 
-                         context=context, parser=parser, prompt_inputs=prompt_inputs
 
-                     )
 
-                     prompt = parser.format(prompt_inputs)
 
-             elif prompt_item.edition_type == "jinja2":
 
-                 prompt = raw_prompt
 
-                 prompt_inputs = inputs
 
-                 prompt = Jinja2Formatter.format(template=prompt, inputs=prompt_inputs)
 
-             else:
 
-                 raise ValueError(f"Invalid edition type: {prompt_item.edition_type}")
 
-             if prompt_item.role == PromptMessageRole.USER:
 
-                 prompt_messages.append(UserPromptMessage(content=prompt))
 
-             elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
 
-                 prompt_messages.append(SystemPromptMessage(content=prompt))
 
-             elif prompt_item.role == PromptMessageRole.ASSISTANT:
 
-                 prompt_messages.append(AssistantPromptMessage(content=prompt))
 
-         if query and memory_config and memory_config.query_prompt_template:
 
-             parser = PromptTemplateParser(
 
-                 template=memory_config.query_prompt_template, with_variable_tmpl=self.with_variable_tmpl
 
-             )
 
-             prompt_inputs = {k: inputs[k] for k in parser.variable_keys if k in inputs}
 
-             prompt_inputs["#sys.query#"] = query
 
-             prompt_inputs = self._set_context_variable(context, parser, prompt_inputs)
 
-             query = parser.format(prompt_inputs)
 
-         if memory and memory_config:
 
-             prompt_messages = self._append_chat_histories(memory, memory_config, prompt_messages, model_config)
 
-             if files and query is not None:
 
-                 prompt_message_contents: list[PromptMessageContent] = []
 
-                 prompt_message_contents.append(TextPromptMessageContent(data=query))
 
-                 for file in files:
 
-                     prompt_message_contents.append(
 
-                         file_manager.to_prompt_message_content(file, image_detail_config=image_detail_config)
 
-                     )
 
-                 prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
 
-             else:
 
-                 prompt_messages.append(UserPromptMessage(content=query))
 
-         elif files:
 
-             if not query:
 
-                 # get last message
 
-                 last_message = prompt_messages[-1] if prompt_messages else None
 
-                 if last_message and last_message.role == PromptMessageRole.USER:
 
-                     # get last user message content and add files
 
-                     prompt_message_contents = [TextPromptMessageContent(data=cast(str, last_message.content))]
 
-                     for file in files:
 
-                         prompt_message_contents.append(
 
-                             file_manager.to_prompt_message_content(file, image_detail_config=image_detail_config)
 
-                         )
 
-                     last_message.content = prompt_message_contents
 
-                 else:
 
-                     prompt_message_contents = [TextPromptMessageContent(data="")]  # not for query
 
-                     for file in files:
 
-                         prompt_message_contents.append(
 
-                             file_manager.to_prompt_message_content(file, image_detail_config=image_detail_config)
 
-                         )
 
-                     prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
 
-             else:
 
-                 prompt_message_contents = [TextPromptMessageContent(data=query)]
 
-                 for file in files:
 
-                     prompt_message_contents.append(
 
-                         file_manager.to_prompt_message_content(file, image_detail_config=image_detail_config)
 
-                     )
 
-                 prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
 
-         elif query:
 
-             prompt_messages.append(UserPromptMessage(content=query))
 
-         return prompt_messages
 
-     def _set_context_variable(
 
-         self, context: str | None, parser: PromptTemplateParser, prompt_inputs: Mapping[str, str]
 
-     ) -> Mapping[str, str]:
 
-         prompt_inputs = dict(prompt_inputs)
 
-         if "#context#" in parser.variable_keys:
 
-             if context:
 
-                 prompt_inputs["#context#"] = context
 
-             else:
 
-                 prompt_inputs["#context#"] = ""
 
-         return prompt_inputs
 
-     def _set_query_variable(
 
-         self, query: str, parser: PromptTemplateParser, prompt_inputs: Mapping[str, str]
 
-     ) -> Mapping[str, str]:
 
-         prompt_inputs = dict(prompt_inputs)
 
-         if "#query#" in parser.variable_keys:
 
-             if query:
 
-                 prompt_inputs["#query#"] = query
 
-             else:
 
-                 prompt_inputs["#query#"] = ""
 
-         return prompt_inputs
 
-     def _set_histories_variable(
 
-         self,
 
-         memory: TokenBufferMemory,
 
-         memory_config: MemoryConfig,
 
-         raw_prompt: str,
 
-         role_prefix: MemoryConfig.RolePrefix,
 
-         parser: PromptTemplateParser,
 
-         prompt_inputs: Mapping[str, str],
 
-         model_config: ModelConfigWithCredentialsEntity,
 
-     ) -> Mapping[str, str]:
 
-         prompt_inputs = dict(prompt_inputs)
 
-         if "#histories#" in parser.variable_keys:
 
-             if memory:
 
-                 inputs = {"#histories#": "", **prompt_inputs}
 
-                 parser = PromptTemplateParser(template=raw_prompt, with_variable_tmpl=self.with_variable_tmpl)
 
-                 prompt_inputs = {k: inputs[k] for k in parser.variable_keys if k in inputs}
 
-                 tmp_human_message = UserPromptMessage(content=parser.format(prompt_inputs))
 
-                 rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
 
-                 histories = self._get_history_messages_from_memory(
 
-                     memory=memory,
 
-                     memory_config=memory_config,
 
-                     max_token_limit=rest_tokens,
 
-                     human_prefix=role_prefix.user,
 
-                     ai_prefix=role_prefix.assistant,
 
-                 )
 
-                 prompt_inputs["#histories#"] = histories
 
-             else:
 
-                 prompt_inputs["#histories#"] = ""
 
-         return prompt_inputs
 
 
  |