dataset_retrieval.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614
  1. import math
  2. import threading
  3. from collections import Counter
  4. from typing import Optional, cast
  5. from flask import Flask, current_app
  6. from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
  7. from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
  8. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  9. from core.entities.agent_entities import PlanningStrategy
  10. from core.memory.token_buffer_memory import TokenBufferMemory
  11. from core.model_manager import ModelInstance, ModelManager
  12. from core.model_runtime.entities.message_entities import PromptMessageTool
  13. from core.model_runtime.entities.model_entities import ModelFeature, ModelType
  14. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  15. from core.ops.entities.trace_entity import TraceTaskName
  16. from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
  17. from core.ops.utils import measure_time
  18. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  19. from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
  20. from core.rag.datasource.retrieval_service import RetrievalService
  21. from core.rag.models.document import Document
  22. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  23. from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
  24. from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
  25. from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
  26. from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
  27. from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
  28. from extensions.ext_database import db
  29. from models.dataset import Dataset, DatasetQuery, DocumentSegment
  30. from models.dataset import Document as DatasetDocument
  31. default_retrieval_model = {
  32. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  33. "reranking_enable": False,
  34. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  35. "top_k": 2,
  36. "score_threshold_enabled": False,
  37. }
  38. class DatasetRetrieval:
  39. def __init__(self, application_generate_entity=None):
  40. self.application_generate_entity = application_generate_entity
  41. def retrieve(
  42. self,
  43. app_id: str,
  44. user_id: str,
  45. tenant_id: str,
  46. model_config: ModelConfigWithCredentialsEntity,
  47. config: DatasetEntity,
  48. query: str,
  49. invoke_from: InvokeFrom,
  50. show_retrieve_source: bool,
  51. hit_callback: DatasetIndexToolCallbackHandler,
  52. message_id: str,
  53. memory: Optional[TokenBufferMemory] = None,
  54. ) -> Optional[str]:
  55. """
  56. Retrieve dataset.
  57. :param app_id: app_id
  58. :param user_id: user_id
  59. :param tenant_id: tenant id
  60. :param model_config: model config
  61. :param config: dataset config
  62. :param query: query
  63. :param invoke_from: invoke from
  64. :param show_retrieve_source: show retrieve source
  65. :param hit_callback: hit callback
  66. :param message_id: message id
  67. :param memory: memory
  68. :return:
  69. """
  70. dataset_ids = config.dataset_ids
  71. if len(dataset_ids) == 0:
  72. return None
  73. retrieve_config = config.retrieve_config
  74. # check model is support tool calling
  75. model_type_instance = model_config.provider_model_bundle.model_type_instance
  76. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  77. model_manager = ModelManager()
  78. model_instance = model_manager.get_model_instance(
  79. tenant_id=tenant_id, model_type=ModelType.LLM, provider=model_config.provider, model=model_config.model
  80. )
  81. # get model schema
  82. model_schema = model_type_instance.get_model_schema(
  83. model=model_config.model, credentials=model_config.credentials
  84. )
  85. if not model_schema:
  86. return None
  87. planning_strategy = PlanningStrategy.REACT_ROUTER
  88. features = model_schema.features
  89. if features:
  90. if ModelFeature.TOOL_CALL in features or ModelFeature.MULTI_TOOL_CALL in features:
  91. planning_strategy = PlanningStrategy.ROUTER
  92. available_datasets = []
  93. for dataset_id in dataset_ids:
  94. # get dataset from dataset id
  95. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  96. # pass if dataset is not available
  97. if not dataset:
  98. continue
  99. # pass if dataset is not available
  100. if dataset and dataset.available_document_count == 0:
  101. continue
  102. available_datasets.append(dataset)
  103. all_documents = []
  104. user_from = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"
  105. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  106. all_documents = self.single_retrieve(
  107. app_id,
  108. tenant_id,
  109. user_id,
  110. user_from,
  111. available_datasets,
  112. query,
  113. model_instance,
  114. model_config,
  115. planning_strategy,
  116. message_id,
  117. )
  118. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  119. all_documents = self.multiple_retrieve(
  120. app_id,
  121. tenant_id,
  122. user_id,
  123. user_from,
  124. available_datasets,
  125. query,
  126. retrieve_config.top_k,
  127. retrieve_config.score_threshold,
  128. retrieve_config.rerank_mode,
  129. retrieve_config.reranking_model,
  130. retrieve_config.weights,
  131. retrieve_config.reranking_enabled,
  132. message_id,
  133. )
  134. document_score_list = {}
  135. for item in all_documents:
  136. if item.metadata.get("score"):
  137. document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
  138. document_context_list = []
  139. index_node_ids = [document.metadata["doc_id"] for document in all_documents]
  140. segments = DocumentSegment.query.filter(
  141. DocumentSegment.dataset_id.in_(dataset_ids),
  142. DocumentSegment.completed_at.isnot(None),
  143. DocumentSegment.status == "completed",
  144. DocumentSegment.enabled == True,
  145. DocumentSegment.index_node_id.in_(index_node_ids),
  146. ).all()
  147. if segments:
  148. index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
  149. sorted_segments = sorted(
  150. segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
  151. )
  152. for segment in sorted_segments:
  153. if segment.answer:
  154. document_context_list.append(f"question:{segment.get_sign_content()} answer:{segment.answer}")
  155. else:
  156. document_context_list.append(segment.get_sign_content())
  157. if show_retrieve_source:
  158. context_list = []
  159. resource_number = 1
  160. for segment in sorted_segments:
  161. dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
  162. document = DatasetDocument.query.filter(
  163. DatasetDocument.id == segment.document_id,
  164. DatasetDocument.enabled == True,
  165. DatasetDocument.archived == False,
  166. ).first()
  167. if dataset and document:
  168. source = {
  169. "position": resource_number,
  170. "dataset_id": dataset.id,
  171. "dataset_name": dataset.name,
  172. "document_id": document.id,
  173. "document_name": document.name,
  174. "data_source_type": document.data_source_type,
  175. "segment_id": segment.id,
  176. "retriever_from": invoke_from.to_source(),
  177. "score": document_score_list.get(segment.index_node_id, None),
  178. }
  179. if invoke_from.to_source() == "dev":
  180. source["hit_count"] = segment.hit_count
  181. source["word_count"] = segment.word_count
  182. source["segment_position"] = segment.position
  183. source["index_node_hash"] = segment.index_node_hash
  184. if segment.answer:
  185. source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
  186. else:
  187. source["content"] = segment.content
  188. context_list.append(source)
  189. resource_number += 1
  190. if hit_callback:
  191. hit_callback.return_retriever_resource_info(context_list)
  192. return str("\n".join(document_context_list))
  193. return ""
  194. def single_retrieve(
  195. self,
  196. app_id: str,
  197. tenant_id: str,
  198. user_id: str,
  199. user_from: str,
  200. available_datasets: list,
  201. query: str,
  202. model_instance: ModelInstance,
  203. model_config: ModelConfigWithCredentialsEntity,
  204. planning_strategy: PlanningStrategy,
  205. message_id: Optional[str] = None,
  206. ):
  207. tools = []
  208. for dataset in available_datasets:
  209. description = dataset.description
  210. if not description:
  211. description = "useful for when you want to answer queries about the " + dataset.name
  212. description = description.replace("\n", "").replace("\r", "")
  213. message_tool = PromptMessageTool(
  214. name=dataset.id,
  215. description=description,
  216. parameters={
  217. "type": "object",
  218. "properties": {},
  219. "required": [],
  220. },
  221. )
  222. tools.append(message_tool)
  223. dataset_id = None
  224. if planning_strategy == PlanningStrategy.REACT_ROUTER:
  225. react_multi_dataset_router = ReactMultiDatasetRouter()
  226. dataset_id = react_multi_dataset_router.invoke(
  227. query, tools, model_config, model_instance, user_id, tenant_id
  228. )
  229. elif planning_strategy == PlanningStrategy.ROUTER:
  230. function_call_router = FunctionCallMultiDatasetRouter()
  231. dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
  232. if dataset_id:
  233. # get retrieval model config
  234. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  235. if dataset:
  236. retrieval_model_config = dataset.retrieval_model or default_retrieval_model
  237. # get top k
  238. top_k = retrieval_model_config["top_k"]
  239. # get retrieval method
  240. if dataset.indexing_technique == "economy":
  241. retrieval_method = "keyword_search"
  242. else:
  243. retrieval_method = retrieval_model_config["search_method"]
  244. # get reranking model
  245. reranking_model = (
  246. retrieval_model_config["reranking_model"] if retrieval_model_config["reranking_enable"] else None
  247. )
  248. # get score threshold
  249. score_threshold = 0.0
  250. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  251. if score_threshold_enabled:
  252. score_threshold = retrieval_model_config.get("score_threshold")
  253. with measure_time() as timer:
  254. results = RetrievalService.retrieve(
  255. retrieval_method=retrieval_method,
  256. dataset_id=dataset.id,
  257. query=query,
  258. top_k=top_k,
  259. score_threshold=score_threshold,
  260. reranking_model=reranking_model,
  261. reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
  262. weights=retrieval_model_config.get("weights", None),
  263. )
  264. self._on_query(query, [dataset_id], app_id, user_from, user_id)
  265. if results:
  266. self._on_retrieval_end(results, message_id, timer)
  267. return results
  268. return []
  269. def multiple_retrieve(
  270. self,
  271. app_id: str,
  272. tenant_id: str,
  273. user_id: str,
  274. user_from: str,
  275. available_datasets: list,
  276. query: str,
  277. top_k: int,
  278. score_threshold: float,
  279. reranking_mode: str,
  280. reranking_model: Optional[dict] = None,
  281. weights: Optional[dict] = None,
  282. reranking_enable: bool = True,
  283. message_id: Optional[str] = None,
  284. ):
  285. threads = []
  286. all_documents = []
  287. dataset_ids = [dataset.id for dataset in available_datasets]
  288. index_type = None
  289. for dataset in available_datasets:
  290. index_type = dataset.indexing_technique
  291. retrieval_thread = threading.Thread(
  292. target=self._retriever,
  293. kwargs={
  294. "flask_app": current_app._get_current_object(),
  295. "dataset_id": dataset.id,
  296. "query": query,
  297. "top_k": top_k,
  298. "all_documents": all_documents,
  299. },
  300. )
  301. threads.append(retrieval_thread)
  302. retrieval_thread.start()
  303. for thread in threads:
  304. thread.join()
  305. with measure_time() as timer:
  306. if reranking_enable:
  307. # do rerank for searched documents
  308. data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
  309. all_documents = data_post_processor.invoke(
  310. query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
  311. )
  312. else:
  313. if index_type == "economy":
  314. all_documents = self.calculate_keyword_score(query, all_documents, top_k)
  315. elif index_type == "high_quality":
  316. all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)
  317. self._on_query(query, dataset_ids, app_id, user_from, user_id)
  318. if all_documents:
  319. self._on_retrieval_end(all_documents, message_id, timer)
  320. return all_documents
  321. def _on_retrieval_end(
  322. self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
  323. ) -> None:
  324. """Handle retrieval end."""
  325. for document in documents:
  326. query = db.session.query(DocumentSegment).filter(
  327. DocumentSegment.index_node_id == document.metadata["doc_id"]
  328. )
  329. # if 'dataset_id' in document.metadata:
  330. if "dataset_id" in document.metadata:
  331. query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
  332. # add hit count to document segment
  333. query.update({DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False)
  334. db.session.commit()
  335. # get tracing instance
  336. trace_manager: TraceQueueManager = (
  337. self.application_generate_entity.trace_manager if self.application_generate_entity else None
  338. )
  339. if trace_manager:
  340. trace_manager.add_trace_task(
  341. TraceTask(
  342. TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
  343. )
  344. )
  345. def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
  346. """
  347. Handle query.
  348. """
  349. if not query:
  350. return
  351. dataset_queries = []
  352. for dataset_id in dataset_ids:
  353. dataset_query = DatasetQuery(
  354. dataset_id=dataset_id,
  355. content=query,
  356. source="app",
  357. source_app_id=app_id,
  358. created_by_role=user_from,
  359. created_by=user_id,
  360. )
  361. dataset_queries.append(dataset_query)
  362. if dataset_queries:
  363. db.session.add_all(dataset_queries)
  364. db.session.commit()
  365. def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
  366. with flask_app.app_context():
  367. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  368. if not dataset:
  369. return []
  370. # get retrieval model , if the model is not setting , using default
  371. retrieval_model = dataset.retrieval_model or default_retrieval_model
  372. if dataset.indexing_technique == "economy":
  373. # use keyword table query
  374. documents = RetrievalService.retrieve(
  375. retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
  376. )
  377. if documents:
  378. all_documents.extend(documents)
  379. else:
  380. if top_k > 0:
  381. # retrieval source
  382. documents = RetrievalService.retrieve(
  383. retrieval_method=retrieval_model["search_method"],
  384. dataset_id=dataset.id,
  385. query=query,
  386. top_k=retrieval_model.get("top_k") or 2,
  387. score_threshold=retrieval_model.get("score_threshold", 0.0)
  388. if retrieval_model["score_threshold_enabled"]
  389. else 0.0,
  390. reranking_model=retrieval_model.get("reranking_model", None)
  391. if retrieval_model["reranking_enable"]
  392. else None,
  393. reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
  394. weights=retrieval_model.get("weights", None),
  395. )
  396. all_documents.extend(documents)
  397. def to_dataset_retriever_tool(
  398. self,
  399. tenant_id: str,
  400. dataset_ids: list[str],
  401. retrieve_config: DatasetRetrieveConfigEntity,
  402. return_resource: bool,
  403. invoke_from: InvokeFrom,
  404. hit_callback: DatasetIndexToolCallbackHandler,
  405. ) -> Optional[list[DatasetRetrieverBaseTool]]:
  406. """
  407. A dataset tool is a tool that can be used to retrieve information from a dataset
  408. :param tenant_id: tenant id
  409. :param dataset_ids: dataset ids
  410. :param retrieve_config: retrieve config
  411. :param return_resource: return resource
  412. :param invoke_from: invoke from
  413. :param hit_callback: hit callback
  414. """
  415. tools = []
  416. available_datasets = []
  417. for dataset_id in dataset_ids:
  418. # get dataset from dataset id
  419. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  420. # pass if dataset is not available
  421. if not dataset:
  422. continue
  423. # pass if dataset is not available
  424. if dataset and dataset.available_document_count == 0:
  425. continue
  426. available_datasets.append(dataset)
  427. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  428. # get retrieval model config
  429. default_retrieval_model = {
  430. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  431. "reranking_enable": False,
  432. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  433. "top_k": 2,
  434. "score_threshold_enabled": False,
  435. }
  436. for dataset in available_datasets:
  437. retrieval_model_config = dataset.retrieval_model or default_retrieval_model
  438. # get top k
  439. top_k = retrieval_model_config["top_k"]
  440. # get score threshold
  441. score_threshold = None
  442. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  443. if score_threshold_enabled:
  444. score_threshold = retrieval_model_config.get("score_threshold")
  445. tool = DatasetRetrieverTool.from_dataset(
  446. dataset=dataset,
  447. top_k=top_k,
  448. score_threshold=score_threshold,
  449. hit_callbacks=[hit_callback],
  450. return_resource=return_resource,
  451. retriever_from=invoke_from.to_source(),
  452. )
  453. tools.append(tool)
  454. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  455. tool = DatasetMultiRetrieverTool.from_dataset(
  456. dataset_ids=[dataset.id for dataset in available_datasets],
  457. tenant_id=tenant_id,
  458. top_k=retrieve_config.top_k or 2,
  459. score_threshold=retrieve_config.score_threshold,
  460. hit_callbacks=[hit_callback],
  461. return_resource=return_resource,
  462. retriever_from=invoke_from.to_source(),
  463. reranking_provider_name=retrieve_config.reranking_model.get("reranking_provider_name"),
  464. reranking_model_name=retrieve_config.reranking_model.get("reranking_model_name"),
  465. )
  466. tools.append(tool)
  467. return tools
  468. def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:
  469. """
  470. Calculate keywords scores
  471. :param query: search query
  472. :param documents: documents for reranking
  473. :return:
  474. """
  475. keyword_table_handler = JiebaKeywordTableHandler()
  476. query_keywords = keyword_table_handler.extract_keywords(query, None)
  477. documents_keywords = []
  478. for document in documents:
  479. # get the document keywords
  480. document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
  481. document.metadata["keywords"] = document_keywords
  482. documents_keywords.append(document_keywords)
  483. # Counter query keywords(TF)
  484. query_keyword_counts = Counter(query_keywords)
  485. # total documents
  486. total_documents = len(documents)
  487. # calculate all documents' keywords IDF
  488. all_keywords = set()
  489. for document_keywords in documents_keywords:
  490. all_keywords.update(document_keywords)
  491. keyword_idf = {}
  492. for keyword in all_keywords:
  493. # calculate include query keywords' documents
  494. doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
  495. # IDF
  496. keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
  497. query_tfidf = {}
  498. for keyword, count in query_keyword_counts.items():
  499. tf = count
  500. idf = keyword_idf.get(keyword, 0)
  501. query_tfidf[keyword] = tf * idf
  502. # calculate all documents' TF-IDF
  503. documents_tfidf = []
  504. for document_keywords in documents_keywords:
  505. document_keyword_counts = Counter(document_keywords)
  506. document_tfidf = {}
  507. for keyword, count in document_keyword_counts.items():
  508. tf = count
  509. idf = keyword_idf.get(keyword, 0)
  510. document_tfidf[keyword] = tf * idf
  511. documents_tfidf.append(document_tfidf)
  512. def cosine_similarity(vec1, vec2):
  513. intersection = set(vec1.keys()) & set(vec2.keys())
  514. numerator = sum(vec1[x] * vec2[x] for x in intersection)
  515. sum1 = sum(vec1[x] ** 2 for x in vec1)
  516. sum2 = sum(vec2[x] ** 2 for x in vec2)
  517. denominator = math.sqrt(sum1) * math.sqrt(sum2)
  518. if not denominator:
  519. return 0.0
  520. else:
  521. return float(numerator) / denominator
  522. similarities = []
  523. for document_tfidf in documents_tfidf:
  524. similarity = cosine_similarity(query_tfidf, document_tfidf)
  525. similarities.append(similarity)
  526. for document, score in zip(documents, similarities):
  527. # format document
  528. document.metadata["score"] = score
  529. documents = sorted(documents, key=lambda x: x.metadata["score"], reverse=True)
  530. return documents[:top_k] if top_k else documents
  531. def calculate_vector_score(
  532. self, all_documents: list[Document], top_k: int, score_threshold: float
  533. ) -> list[Document]:
  534. filter_documents = []
  535. for document in all_documents:
  536. if score_threshold is None or document.metadata["score"] >= score_threshold:
  537. filter_documents.append(document)
  538. if not filter_documents:
  539. return []
  540. filter_documents = sorted(filter_documents, key=lambda x: x.metadata["score"], reverse=True)
  541. return filter_documents[:top_k] if top_k else filter_documents