123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- from typing import Optional
- from core.model_manager import ModelInstance
- from core.rag.models.document import Document
- class RerankModelRunner:
- def __init__(self, rerank_model_instance: ModelInstance) -> None:
- self.rerank_model_instance = rerank_model_instance
- def run(
- self,
- query: str,
- documents: list[Document],
- score_threshold: Optional[float] = None,
- top_n: Optional[int] = None,
- user: Optional[str] = None,
- ) -> list[Document]:
- """
- Run rerank model
- :param query: search query
- :param documents: documents for reranking
- :param score_threshold: score threshold
- :param top_n: top n
- :param user: unique user id if needed
- :return:
- """
- docs = []
- doc_id = []
- unique_documents = []
- for document in documents:
- if document.metadata["doc_id"] not in doc_id:
- doc_id.append(document.metadata["doc_id"])
- docs.append(document.page_content)
- unique_documents.append(document)
- documents = unique_documents
- rerank_result = self.rerank_model_instance.invoke_rerank(
- query=query, docs=docs, score_threshold=score_threshold, top_n=top_n, user=user
- )
- rerank_documents = []
- for result in rerank_result.docs:
- # format document
- rerank_document = Document(
- page_content=result.text,
- metadata={
- "doc_id": documents[result.index].metadata["doc_id"],
- "doc_hash": documents[result.index].metadata["doc_hash"],
- "document_id": documents[result.index].metadata["document_id"],
- "dataset_id": documents[result.index].metadata["dataset_id"],
- "score": result.score,
- },
- )
- rerank_documents.append(rerank_document)
- return rerank_documents
|