dataset_service.py 126 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852
  1. import copy
  2. import datetime
  3. import json
  4. import logging
  5. import random
  6. import time
  7. import uuid
  8. from collections import Counter
  9. from typing import Any, Optional
  10. from flask_login import current_user # type: ignore
  11. from sqlalchemy import func, literal, text
  12. from sqlalchemy.orm import Session
  13. from werkzeug.exceptions import NotFound
  14. from configs import dify_config
  15. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  16. from core.model_manager import ModelManager
  17. from core.model_runtime.entities.model_entities import ModelType
  18. from core.plugin.entities.plugin import ModelProviderID
  19. from core.rag.index_processor.constant.built_in_field import BuiltInField
  20. from core.rag.index_processor.constant.index_type import IndexType
  21. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  22. from events.dataset_event import dataset_was_deleted
  23. from events.document_event import document_was_deleted
  24. from events.template_event import template_was_deleted
  25. from extensions.ext_database import db
  26. from extensions.ext_redis import redis_client
  27. from libs import helper
  28. from models.account import Account, TenantAccountRole
  29. from models.dataset import (
  30. AppDatasetJoin,
  31. ChildChunk,
  32. Dataset,
  33. DatasetAutoDisableLog,
  34. DatasetCollectionBinding,
  35. DatasetPermission,
  36. DatasetPermissionAll,
  37. DatasetPermissionEnum,
  38. DatasetProcessRule,
  39. DatasetQuery,
  40. Document,
  41. DocumentSegment,
  42. ExternalKnowledgeBindings,
  43. Template,
  44. )
  45. from models.model import UploadFile
  46. from models.source import DataSourceOauthBinding
  47. from services.entities.knowledge_entities.knowledge_entities import (
  48. ChildChunkUpdateArgs,
  49. KnowledgeConfig,
  50. RerankingModel,
  51. RetrievalModel,
  52. SegmentUpdateArgs,
  53. )
  54. from services.errors.account import InvalidActionError, NoPermissionError
  55. from services.errors.chunk import ChildChunkDeleteIndexError, ChildChunkIndexingError
  56. from services.errors.dataset import DatasetNameDuplicateError
  57. from services.errors.document import DocumentIndexingError
  58. from services.errors.file import FileNotExistsError
  59. from services.external_knowledge_service import ExternalDatasetService
  60. from services.feature_service import FeatureModel, FeatureService
  61. from services.tag_service import TagService
  62. from services.vector_service import VectorService
  63. from tasks.batch_clean_document_task import batch_clean_document_task
  64. from tasks.batch_clean_template_task import batch_clean_template_task
  65. from tasks.clean_notion_document_task import clean_notion_document_task
  66. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  67. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  68. from tasks.disable_segment_from_index_task import disable_segment_from_index_task
  69. from tasks.disable_segments_from_index_task import disable_segments_from_index_task
  70. from tasks.document_indexing_task import document_indexing_task
  71. from tasks.document_indexing_update_task import document_indexing_update_task
  72. from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
  73. from tasks.enable_segments_to_index_task import enable_segments_to_index_task
  74. from tasks.recover_document_indexing_task import recover_document_indexing_task
  75. from tasks.retry_document_indexing_task import retry_document_indexing_task
  76. from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
  77. class DatasetService:
  78. @staticmethod
  79. def get_datasets(
  80. page, per_page, tenant_id=None, user=None, search=None, tag_ids=None, category_ids=None, include_all=False
  81. ):
  82. query = Dataset.query.filter(Dataset.tenant_id == tenant_id).order_by(Dataset.created_at.desc())
  83. if user:
  84. # get permitted dataset ids
  85. dataset_permission = DatasetPermission.query.filter_by(account_id=user.id, tenant_id=tenant_id).all()
  86. permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None
  87. if user.current_role == TenantAccountRole.DATASET_OPERATOR:
  88. # only show datasets that the user has permission to access
  89. if permitted_dataset_ids:
  90. query = query.filter(Dataset.id.in_(permitted_dataset_ids))
  91. else:
  92. return [], 0
  93. else:
  94. if user.current_role != TenantAccountRole.OWNER or not include_all:
  95. # show all datasets that the user has permission to access
  96. if permitted_dataset_ids:
  97. query = query.filter(
  98. db.or_(
  99. Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
  100. db.and_(
  101. Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id
  102. ),
  103. db.and_(
  104. Dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM,
  105. Dataset.id.in_(permitted_dataset_ids),
  106. ),
  107. )
  108. )
  109. else:
  110. query = query.filter(
  111. db.or_(
  112. Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
  113. db.and_(
  114. Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id
  115. ),
  116. )
  117. )
  118. else:
  119. # if no user, only show datasets that are shared with all team members
  120. query = query.filter(Dataset.permission == DatasetPermissionEnum.ALL_TEAM)
  121. if search:
  122. query = query.filter(Dataset.name.ilike(f"%{search}%"))
  123. if tag_ids:
  124. target_ids = TagService.get_target_ids_by_tag_ids("knowledge", tenant_id, tag_ids)
  125. if target_ids:
  126. query = query.filter(Dataset.id.in_(target_ids))
  127. else:
  128. return [], 0
  129. if category_ids:
  130. target_ids_by_category_ids = TagService.get_target_ids_by_tag_ids(
  131. "knowledge_category", tenant_id, category_ids
  132. )
  133. if target_ids_by_category_ids:
  134. query = query.filter(Dataset.id.in_(target_ids_by_category_ids))
  135. else:
  136. return [], 0
  137. datasets = query.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
  138. return datasets.items, datasets.total
  139. @staticmethod
  140. def get_process_rules(dataset_id):
  141. # get the latest process rule
  142. dataset_process_rule = (
  143. db.session.query(DatasetProcessRule)
  144. .filter(DatasetProcessRule.dataset_id == dataset_id)
  145. .order_by(DatasetProcessRule.created_at.desc())
  146. .limit(1)
  147. .one_or_none()
  148. )
  149. if dataset_process_rule:
  150. mode = dataset_process_rule.mode
  151. rules = dataset_process_rule.rules_dict
  152. else:
  153. mode = DocumentService.DEFAULT_RULES["mode"]
  154. rules = DocumentService.DEFAULT_RULES["rules"]
  155. return {"mode": mode, "rules": rules}
  156. @staticmethod
  157. def get_datasets_by_ids(ids, tenant_id):
  158. datasets = Dataset.query.filter(Dataset.id.in_(ids), Dataset.tenant_id == tenant_id).paginate(
  159. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False
  160. )
  161. return datasets.items, datasets.total
  162. @staticmethod
  163. def get_datasets_count(tenant_id: str, user) -> int:
  164. query = Dataset.query
  165. if tenant_id:
  166. query = query.filter(Dataset.tenant_id == tenant_id)
  167. if user:
  168. dataset_permission = DatasetPermission.query.filter_by(account_id=user.id, tenant_id=tenant_id).all()
  169. permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None
  170. if user.current_role == TenantAccountRole.DATASET_OPERATOR:
  171. if permitted_dataset_ids:
  172. query = query.filter(Dataset.id.in_(permitted_dataset_ids))
  173. else:
  174. return 0
  175. else:
  176. if user.current_role != TenantAccountRole.OWNER:
  177. if permitted_dataset_ids:
  178. query = query.filter(
  179. db.or_(
  180. Dataset.id.in_(permitted_dataset_ids),
  181. Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
  182. )
  183. )
  184. return query.count()
  185. @staticmethod
  186. def get_tags_count(
  187. tenant_id: str,
  188. ) -> int:
  189. return TagService.get_tags_count(tenant_id)
  190. @staticmethod
  191. def count_datasets(tenant_id=None):
  192. query = Dataset.query
  193. if tenant_id:
  194. query = query.filter(Dataset.tenant_id == tenant_id)
  195. return query.count()
  196. @staticmethod
  197. def get_dataset_update_stats(tenant_id):
  198. """Get dataset update statistics."""
  199. from datetime import datetime, timedelta
  200. now = datetime.utcnow()
  201. base_query = Dataset.query
  202. if tenant_id:
  203. base_query = base_query.filter(Dataset.tenant_id == tenant_id)
  204. # 统计不同时间段内更新的数据集数量
  205. stats = {
  206. "over_180_days": base_query.filter(Dataset.updated_at <= now - timedelta(days=180)).count(),
  207. "within_180_days": base_query.filter(
  208. Dataset.updated_at > now - timedelta(days=180), Dataset.updated_at <= now
  209. ).count(),
  210. "within_90_days": base_query.filter(
  211. Dataset.updated_at > now - timedelta(days=90), Dataset.updated_at <= now
  212. ).count(),
  213. "within_30_days": base_query.filter(
  214. Dataset.updated_at > now - timedelta(days=30), Dataset.updated_at <= now
  215. ).count(),
  216. "within_7_days": base_query.filter(
  217. Dataset.updated_at > now - timedelta(days=7), Dataset.updated_at <= now
  218. ).count(),
  219. "within_3_days": base_query.filter(Dataset.updated_at > now - timedelta(days=3)).count(),
  220. }
  221. return stats
  222. @staticmethod
  223. def get_dataset_type_stats(tenant_id):
  224. sql = """
  225. SELECT t.name, t.id, COUNT(*) as count
  226. FROM datasets d
  227. LEFT JOIN tag_bindings tb ON tb.target_id = d.id
  228. LEFT JOIN tags t ON t.id = tb.tag_id
  229. WHERE t.type = 'knowledge_category'
  230. """
  231. params = {}
  232. if tenant_id:
  233. sql += " AND d.tenant_id = :tenant_id"
  234. params["tenant_id"] = tenant_id
  235. sql += " GROUP BY t.name, t.id"
  236. # 注意这里要用 text(sql)
  237. result = db.session.execute(text(sql), params).fetchall()
  238. total = sum(row.count for row in result)
  239. if total == 0:
  240. return []
  241. # 计算百分比并格式化结果
  242. stats = []
  243. for row in result:
  244. percentage = (row.count / total) * 100
  245. stats.append({"type": row.name, "percentage": round(percentage, 2)})
  246. return stats
  247. @staticmethod
  248. def has_edit_permission(account_id: str, dataset_id: str) -> bool:
  249. result = (
  250. db.session.query(DatasetPermissionAll)
  251. .filter_by(account_id=account_id, dataset_id=dataset_id, has_edit_permission=True)
  252. .first()
  253. )
  254. return result is not None
  255. @staticmethod
  256. def get_datasets_edit_permission(dataset_id):
  257. results = (
  258. db.session.query(DatasetPermissionAll.account_id, Account.email, DatasetPermissionAll.dataset_id)
  259. .join(DatasetPermissionAll, Account.id == DatasetPermissionAll.account_id)
  260. .filter(DatasetPermissionAll.dataset_id == dataset_id, DatasetPermissionAll.has_edit_permission == True)
  261. .all()
  262. )
  263. edit_permission_list = []
  264. for row in results:
  265. edit_permission_list.append({"id": row.account_id, "email": row.email})
  266. return edit_permission_list
  267. @staticmethod
  268. def get_datasets_read_permission(dataset_id):
  269. results = (
  270. db.session.query(DatasetPermissionAll.account_id, Account.email)
  271. .join(DatasetPermissionAll, Account.id == DatasetPermissionAll.account_id)
  272. .filter(DatasetPermissionAll.dataset_id == dataset_id, DatasetPermissionAll.has_read_permission == True)
  273. .all()
  274. )
  275. read_permission_list = []
  276. for row in results:
  277. read_permission_list.append({"id": row.account_id, "email": row.email})
  278. return read_permission_list
  279. @staticmethod
  280. def update_dataset_edit_auth(dataset_id, edit_auth, user):
  281. dataset = DatasetService.get_dataset(dataset_id)
  282. if not dataset:
  283. raise ValueError("Dataset not found")
  284. if dataset.edit_auth != edit_auth:
  285. dataset.query.filter_by(id=dataset_id).update(
  286. {"edit_auth": edit_auth, "updated_by": user.id, "updated_at": datetime.datetime.now()}
  287. )
  288. db.session.commit()
  289. # if action:
  290. # deal_dataset_vector_index_task.delay(dataset_id, action)
  291. @staticmethod
  292. def update_dataset_edit_and_read_permission(dataset_id, user, edit_permission_list, read_permission_list):
  293. old_edit_permission_list = DatasetService.get_datasets_edit_permission(dataset_id)
  294. # 提取 id 字段
  295. old_edit_permission_set = {item.get("id") for item in old_edit_permission_list}
  296. edit_permission_set = {item.get("id") for item in edit_permission_list}
  297. delete_edit_permission_set = old_edit_permission_set - edit_permission_set
  298. delete_edit_permission_list = list(delete_edit_permission_set)
  299. for delete_edit in delete_edit_permission_list:
  300. delete_account_id = str(delete_edit)
  301. DatasetPermissionAll.query.filter_by(dataset_id=dataset_id, account_id=delete_account_id).update(
  302. {"has_edit_permission": False, "updated_by": user.id, "updated_at": datetime.datetime.now()}
  303. )
  304. db.session.commit()
  305. for edit_permission in edit_permission_list:
  306. account_id = edit_permission.get("id")
  307. email = edit_permission.get("email")
  308. dataset_permission_all: Optional[DatasetPermissionAll] = DatasetPermissionAll.query.filter_by(
  309. dataset_id=dataset_id, email=email, account_id=account_id
  310. ).first()
  311. if dataset_permission_all == None:
  312. new_dataset_permission_all = DatasetPermissionAll()
  313. new_dataset_permission_all.dataset_id = dataset_id
  314. new_dataset_permission_all.account_id = account_id
  315. new_dataset_permission_all.created_by = user.id
  316. new_dataset_permission_all.created_at = datetime.datetime.now()
  317. new_dataset_permission_all.has_edit_permission = True
  318. new_dataset_permission_all.email = email
  319. db.session.add(new_dataset_permission_all)
  320. db.session.commit()
  321. db.session.flush()
  322. else:
  323. if dataset_permission_all.has_edit_permission == False:
  324. dataset_permission_all.query.filter_by(dataset_id=dataset_id, account_id=account_id).update(
  325. {"has_edit_permission": True, "updated_by": user.id, "updated_at": datetime.datetime.now()}
  326. )
  327. db.session.commit()
  328. old_read_permission_list = DatasetService.get_datasets_read_permission(dataset_id)
  329. old_read_permission_set = {item.get("id") for item in old_read_permission_list}
  330. read_permission_set = {item.get("id") for item in read_permission_list}
  331. delete_read_permission_set = old_read_permission_set - read_permission_set
  332. delete_read_permission_list = list(delete_read_permission_set)
  333. for delete_read in delete_read_permission_list:
  334. delete_account_id = str(delete_read)
  335. DatasetPermissionAll.query.filter_by(dataset_id=dataset_id, account_id=delete_account_id).update(
  336. {"has_read_permission": False, "updated_by": user.id, "updated_at": datetime.datetime.now()}
  337. )
  338. db.session.commit()
  339. for read_permission in read_permission_list:
  340. account_id = read_permission.get("id")
  341. email = read_permission.get("email")
  342. dataset_permission_all: Optional[DatasetPermissionAll] = DatasetPermissionAll.query.filter_by(
  343. dataset_id=dataset_id, account_id=account_id
  344. ).first()
  345. if dataset_permission_all == None:
  346. # 插入
  347. new_dataset_permission_all = DatasetPermissionAll()
  348. new_dataset_permission_all.dataset_id = dataset_id
  349. new_dataset_permission_all.account_id = account_id
  350. new_dataset_permission_all.created_by = user.id
  351. new_dataset_permission_all.updated_by = user.id
  352. new_dataset_permission_all.has_read_permission = True
  353. new_dataset_permission_all.email = email
  354. db.session.add(new_dataset_permission_all)
  355. db.session.commit()
  356. db.session.flush()
  357. else:
  358. if dataset_permission_all.has_read_permission == False:
  359. dataset_permission_all.query.filter_by(dataset_id=dataset_id, account_id=account_id).update(
  360. {"has_read_permission": True, "updated_by": user.id, "updated_at": datetime.datetime.now()}
  361. )
  362. db.session.commit()
  363. @staticmethod
  364. def create_empty_dataset(
  365. tenant_id: str,
  366. name: str,
  367. description: Optional[str],
  368. indexing_technique: Optional[str],
  369. account: Account,
  370. permission: Optional[str] = None,
  371. provider: str = "vendor",
  372. external_knowledge_api_id: Optional[str] = None,
  373. external_knowledge_id: Optional[str] = None,
  374. ):
  375. # check if dataset name already exists
  376. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  377. raise DatasetNameDuplicateError(f"Dataset with name {name} already exists.")
  378. embedding_model = None
  379. if indexing_technique == "high_quality":
  380. model_manager = ModelManager()
  381. embedding_model = model_manager.get_default_model_instance(
  382. tenant_id=tenant_id, model_type=ModelType.TEXT_EMBEDDING
  383. )
  384. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  385. # dataset = Dataset(name=name, provider=provider, config=config)
  386. dataset.description = description
  387. dataset.created_by = account.id
  388. dataset.updated_by = account.id
  389. dataset.tenant_id = tenant_id
  390. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  391. dataset.embedding_model = embedding_model.model if embedding_model else None
  392. dataset.permission = DatasetPermissionEnum.ALL_TEAM
  393. dataset.provider = provider
  394. dataset.dept_id = account.dept_id
  395. db.session.add(dataset)
  396. db.session.flush()
  397. if provider == "external" and external_knowledge_api_id:
  398. external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id)
  399. if not external_knowledge_api:
  400. raise ValueError("External API template not found.")
  401. external_knowledge_binding = ExternalKnowledgeBindings(
  402. tenant_id=tenant_id,
  403. dataset_id=dataset.id,
  404. external_knowledge_api_id=external_knowledge_api_id,
  405. external_knowledge_id=external_knowledge_id,
  406. created_by=account.id,
  407. )
  408. db.session.add(external_knowledge_binding)
  409. db.session.commit()
  410. return dataset
  411. @staticmethod
  412. def get_dataset(dataset_id) -> Optional[Dataset]:
  413. dataset: Optional[Dataset] = Dataset.query.filter_by(id=dataset_id).first()
  414. return dataset
  415. @staticmethod
  416. def check_dataset_model_setting(dataset):
  417. if dataset.indexing_technique == "high_quality":
  418. try:
  419. model_manager = ModelManager()
  420. model_manager.get_model_instance(
  421. tenant_id=dataset.tenant_id,
  422. provider=dataset.embedding_model_provider,
  423. model_type=ModelType.TEXT_EMBEDDING,
  424. model=dataset.embedding_model,
  425. )
  426. except LLMBadRequestError:
  427. raise ValueError(
  428. "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
  429. )
  430. except ProviderTokenNotInitError as ex:
  431. raise ValueError(f"The dataset in unavailable, due to: {ex.description}")
  432. @staticmethod
  433. def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model: str):
  434. try:
  435. model_manager = ModelManager()
  436. model_manager.get_model_instance(
  437. tenant_id=tenant_id,
  438. provider=embedding_model_provider,
  439. model_type=ModelType.TEXT_EMBEDDING,
  440. model=embedding_model,
  441. )
  442. except LLMBadRequestError:
  443. raise ValueError(
  444. "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
  445. )
  446. except ProviderTokenNotInitError as ex:
  447. raise ValueError(ex.description)
  448. @staticmethod
  449. def update_dataset(dataset_id, data, user):
  450. dataset = DatasetService.get_dataset(dataset_id)
  451. if not dataset:
  452. raise ValueError("Dataset not found")
  453. DatasetService.check_dataset_permission(dataset, user)
  454. if dataset.provider == "external":
  455. external_retrieval_model = data.get("external_retrieval_model", None)
  456. if external_retrieval_model:
  457. dataset.retrieval_model = external_retrieval_model
  458. dataset.name = data.get("name", dataset.name)
  459. dataset.description = data.get("description", "")
  460. permission = data.get("permission")
  461. if permission:
  462. dataset.permission = permission
  463. external_knowledge_id = data.get("external_knowledge_id", None)
  464. db.session.add(dataset)
  465. if not external_knowledge_id:
  466. raise ValueError("External knowledge id is required.")
  467. external_knowledge_api_id = data.get("external_knowledge_api_id", None)
  468. if not external_knowledge_api_id:
  469. raise ValueError("External knowledge api id is required.")
  470. with Session(db.engine) as session:
  471. external_knowledge_binding = (
  472. session.query(ExternalKnowledgeBindings).filter_by(dataset_id=dataset_id).first()
  473. )
  474. if not external_knowledge_binding:
  475. raise ValueError("External knowledge binding not found.")
  476. if (
  477. external_knowledge_binding.external_knowledge_id != external_knowledge_id
  478. or external_knowledge_binding.external_knowledge_api_id != external_knowledge_api_id
  479. ):
  480. external_knowledge_binding.external_knowledge_id = external_knowledge_id
  481. external_knowledge_binding.external_knowledge_api_id = external_knowledge_api_id
  482. db.session.add(external_knowledge_binding)
  483. db.session.commit()
  484. else:
  485. data.pop("partial_member_list", None)
  486. data.pop("external_knowledge_api_id", None)
  487. data.pop("external_knowledge_id", None)
  488. data.pop("external_retrieval_model", None)
  489. filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"}
  490. action = None
  491. if dataset.indexing_technique != data["indexing_technique"]:
  492. # if update indexing_technique
  493. if data["indexing_technique"] == "economy":
  494. action = "remove"
  495. filtered_data["embedding_model"] = None
  496. filtered_data["embedding_model_provider"] = None
  497. filtered_data["collection_binding_id"] = None
  498. elif data["indexing_technique"] == "high_quality":
  499. action = "add"
  500. # get embedding model setting
  501. try:
  502. model_manager = ModelManager()
  503. embedding_model = model_manager.get_model_instance(
  504. tenant_id=current_user.current_tenant_id,
  505. provider=data["embedding_model_provider"],
  506. model_type=ModelType.TEXT_EMBEDDING,
  507. model=data["embedding_model"],
  508. )
  509. filtered_data["embedding_model"] = embedding_model.model
  510. filtered_data["embedding_model_provider"] = embedding_model.provider
  511. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  512. embedding_model.provider, embedding_model.model
  513. )
  514. filtered_data["collection_binding_id"] = dataset_collection_binding.id
  515. except LLMBadRequestError:
  516. raise ValueError(
  517. "No Embedding Model available. Please configure a valid provider "
  518. "in the Settings -> Model Provider."
  519. )
  520. except ProviderTokenNotInitError as ex:
  521. raise ValueError(ex.description)
  522. else:
  523. # add default plugin id to both setting sets, to make sure the plugin model provider is consistent
  524. # Skip embedding model checks if not provided in the update request
  525. if (
  526. "embedding_model_provider" not in data
  527. or "embedding_model" not in data
  528. or not data.get("embedding_model_provider")
  529. or not data.get("embedding_model")
  530. ):
  531. # If the dataset already has embedding model settings, use those
  532. if dataset.embedding_model_provider and dataset.embedding_model:
  533. # Keep existing values
  534. filtered_data["embedding_model_provider"] = dataset.embedding_model_provider
  535. filtered_data["embedding_model"] = dataset.embedding_model
  536. # If collection_binding_id exists, keep it too
  537. if dataset.collection_binding_id:
  538. filtered_data["collection_binding_id"] = dataset.collection_binding_id
  539. # Otherwise, don't try to update embedding model settings at all
  540. # Remove these fields from filtered_data if they exist but are None/empty
  541. if "embedding_model_provider" in filtered_data and not filtered_data["embedding_model_provider"]:
  542. del filtered_data["embedding_model_provider"]
  543. if "embedding_model" in filtered_data and not filtered_data["embedding_model"]:
  544. del filtered_data["embedding_model"]
  545. else:
  546. skip_embedding_update = False
  547. try:
  548. # Handle existing model provider
  549. plugin_model_provider = dataset.embedding_model_provider
  550. plugin_model_provider_str = None
  551. if plugin_model_provider:
  552. plugin_model_provider_str = str(ModelProviderID(plugin_model_provider))
  553. # Handle new model provider from request
  554. new_plugin_model_provider = data["embedding_model_provider"]
  555. new_plugin_model_provider_str = None
  556. if new_plugin_model_provider:
  557. new_plugin_model_provider_str = str(ModelProviderID(new_plugin_model_provider))
  558. # Only update embedding model if both values are provided and different from current
  559. if (
  560. plugin_model_provider_str != new_plugin_model_provider_str
  561. or data["embedding_model"] != dataset.embedding_model
  562. ):
  563. action = "update"
  564. model_manager = ModelManager()
  565. try:
  566. embedding_model = model_manager.get_model_instance(
  567. tenant_id=current_user.current_tenant_id,
  568. provider=data["embedding_model_provider"],
  569. model_type=ModelType.TEXT_EMBEDDING,
  570. model=data["embedding_model"],
  571. )
  572. except ProviderTokenNotInitError:
  573. # If we can't get the embedding model, skip updating it
  574. # and keep the existing settings if available
  575. if dataset.embedding_model_provider and dataset.embedding_model:
  576. filtered_data["embedding_model_provider"] = dataset.embedding_model_provider
  577. filtered_data["embedding_model"] = dataset.embedding_model
  578. if dataset.collection_binding_id:
  579. filtered_data["collection_binding_id"] = dataset.collection_binding_id
  580. # Skip the rest of the embedding model update
  581. skip_embedding_update = True
  582. if not skip_embedding_update:
  583. filtered_data["embedding_model"] = embedding_model.model
  584. filtered_data["embedding_model_provider"] = embedding_model.provider
  585. dataset_collection_binding = (
  586. DatasetCollectionBindingService.get_dataset_collection_binding(
  587. embedding_model.provider, embedding_model.model
  588. )
  589. )
  590. filtered_data["collection_binding_id"] = dataset_collection_binding.id
  591. except LLMBadRequestError:
  592. raise ValueError(
  593. "No Embedding Model available. Please configure a valid provider "
  594. "in the Settings -> Model Provider."
  595. )
  596. except ProviderTokenNotInitError as ex:
  597. raise ValueError(ex.description)
  598. filtered_data["updated_by"] = user.id
  599. filtered_data["updated_at"] = datetime.datetime.now()
  600. # update Retrieval model
  601. filtered_data["retrieval_model"] = data["retrieval_model"]
  602. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  603. db.session.commit()
  604. if action:
  605. deal_dataset_vector_index_task.delay(dataset_id, action)
  606. return dataset
  607. @staticmethod
  608. def delete_dataset(dataset_id, user):
  609. dataset = DatasetService.get_dataset(dataset_id)
  610. if dataset is None:
  611. return False
  612. DatasetService.check_dataset_permission(dataset, user)
  613. dataset_was_deleted.send(dataset)
  614. db.session.delete(dataset)
  615. db.session.commit()
  616. return True
  617. @staticmethod
  618. def dataset_use_check(dataset_id) -> bool:
  619. count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
  620. if count > 0:
  621. return True
  622. return False
  623. @staticmethod
  624. def check_dataset_permission(dataset, user):
  625. if dataset.tenant_id != user.current_tenant_id:
  626. logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
  627. raise NoPermissionError("You do not have permission to access this dataset.")
  628. if user.current_role != TenantAccountRole.OWNER:
  629. if dataset.permission == DatasetPermissionEnum.ONLY_ME and dataset.created_by != user.id:
  630. logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
  631. raise NoPermissionError("You do not have permission to access this dataset.")
  632. if dataset.permission == "partial_members":
  633. user_permission = DatasetPermission.query.filter_by(dataset_id=dataset.id, account_id=user.id).first()
  634. if (
  635. not user_permission
  636. and dataset.tenant_id != user.current_tenant_id
  637. and dataset.created_by != user.id
  638. ):
  639. logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
  640. raise NoPermissionError("You do not have permission to access this dataset.")
  641. @staticmethod
  642. def check_dataset_permission_new(dataset, user):
  643. if dataset.tenant_id != user.current_tenant_id:
  644. logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
  645. raise NoPermissionError("You do not have permission to access this dataset.")
  646. if user.current_role != TenantAccountRole.OWNER:
  647. if user.current_role != Acc.ADMIN and dataset.created_by != user.id:
  648. logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
  649. raise NoPermissionError("You do not have permission to access this dataset.")
  650. @staticmethod
  651. def check_dataset_operator_permission(user: Optional[Account] = None, dataset: Optional[Dataset] = None):
  652. if not dataset:
  653. raise ValueError("Dataset not found")
  654. if not user:
  655. raise ValueError("User not found")
  656. if user.current_role != TenantAccountRole.OWNER:
  657. if dataset.permission == DatasetPermissionEnum.ONLY_ME:
  658. if dataset.created_by != user.id:
  659. raise NoPermissionError("You do not have permission to access this dataset.")
  660. elif dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM:
  661. if not any(
  662. dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()
  663. ):
  664. raise NoPermissionError("You do not have permission to access this dataset.")
  665. @staticmethod
  666. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  667. dataset_queries = (
  668. DatasetQuery.query.filter_by(dataset_id=dataset_id)
  669. .order_by(db.desc(DatasetQuery.created_at))
  670. .paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
  671. )
  672. return dataset_queries.items, dataset_queries.total
  673. @staticmethod
  674. def get_related_apps(dataset_id: str):
  675. return (
  676. AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id)
  677. .order_by(db.desc(AppDatasetJoin.created_at))
  678. .all()
  679. )
  680. @staticmethod
  681. def get_dataset_auto_disable_logs(dataset_id: str) -> dict:
  682. features = FeatureService.get_features(current_user.current_tenant_id)
  683. if not features.billing.enabled or features.billing.subscription.plan == "sandbox":
  684. return {
  685. "document_ids": [],
  686. "count": 0,
  687. }
  688. # get recent 30 days auto disable logs
  689. start_date = datetime.datetime.now() - datetime.timedelta(days=30)
  690. dataset_auto_disable_logs = DatasetAutoDisableLog.query.filter(
  691. DatasetAutoDisableLog.dataset_id == dataset_id,
  692. DatasetAutoDisableLog.created_at >= start_date,
  693. ).all()
  694. if dataset_auto_disable_logs:
  695. return {
  696. "document_ids": [log.document_id for log in dataset_auto_disable_logs],
  697. "count": len(dataset_auto_disable_logs),
  698. }
  699. return {
  700. "document_ids": [],
  701. "count": 0,
  702. }
  703. @staticmethod
  704. def get_datasets2(
  705. page,
  706. per_page,
  707. tenant_id=None,
  708. user=None,
  709. search=None,
  710. tag_ids=None,
  711. category_ids=None,
  712. auth_type=None,
  713. creator_dept=None,
  714. creator=None,
  715. include_all=False,
  716. ):
  717. user_id = user.id
  718. queries = []
  719. # 1. 创建:row.created_by == loginUserId,
  720. query1 = Dataset.query.filter(Dataset.created_by == user_id)
  721. # 2. 编辑:row.deptId == loginDeptId && row.editAuth == 2
  722. query2 = Dataset.query.join(Account, Dataset.dept_id == Account.dept_id)
  723. query2 = query2.filter(Dataset.edit_auth == 2, Account.id == user_id)
  724. # 3.授权编辑:row.editUserIds.includes(loginUserId)
  725. query3 = Dataset.query.join(DatasetPermissionAll, Dataset.id == DatasetPermissionAll.dataset_id).filter(
  726. DatasetPermissionAll.account_id == user_id, DatasetPermissionAll.has_edit_permission == True
  727. )
  728. # 4.授权可见:row.lookUserIds.includes(loginUserId)
  729. query4 = Dataset.query.join(DatasetPermissionAll, Dataset.id == DatasetPermissionAll.dataset_id).filter(
  730. DatasetPermissionAll.account_id == user_id, DatasetPermissionAll.has_read_permission == True
  731. )
  732. # 根据 auth_type 选择要使用的查询
  733. if auth_type is None:
  734. # 如果 auth_type 为空,使用所有查询
  735. queries = [query1, query2, query3, query4]
  736. elif auth_type == 1:
  737. queries = [query1]
  738. elif auth_type == 2:
  739. queries = [query2]
  740. elif auth_type == 3:
  741. queries = [query3]
  742. elif auth_type == 4:
  743. queries = [query4]
  744. # 合并查询
  745. if not queries:
  746. return [], 0
  747. union_query = queries[0]
  748. for query in queries[1:]:
  749. union_query = union_query.union(query)
  750. # 添加创建人部门过滤
  751. if creator_dept:
  752. union_query = union_query.join(Account, Dataset.created_by == Account.id)
  753. union_query = union_query.filter(Account.dept_id == literal(str(creator_dept)))
  754. # 添加创建人过滤
  755. if creator:
  756. union_query = union_query.filter(Dataset.created_by == creator)
  757. # 其它过滤
  758. if search:
  759. union_query = union_query.filter(Dataset.name.ilike(f"%{search}%"))
  760. if tag_ids:
  761. target_ids = TagService.get_target_ids_by_tag_ids("knowledge", tenant_id, tag_ids)
  762. if target_ids:
  763. union_query = union_query.filter(Dataset.id.in_(target_ids))
  764. else:
  765. return [], 0
  766. if category_ids:
  767. target_ids_by_category_ids = TagService.get_target_ids_by_tag_ids(
  768. "knowledge_category", tenant_id, category_ids
  769. )
  770. if target_ids_by_category_ids:
  771. union_query = union_query.filter(Dataset.id.in_(target_ids_by_category_ids))
  772. else:
  773. return [], 0
  774. datasets = union_query.order_by(Dataset.created_at.desc()).paginate(
  775. page=page, per_page=per_page, max_per_page=100, error_out=False
  776. )
  777. return datasets.items, datasets.total
  778. class TemplateService:
  779. DEFAULT_RULES: dict[str, Any] = {
  780. "mode": "custom",
  781. "rules": {
  782. "pre_processing_rules": [
  783. {"id": "remove_extra_spaces", "enabled": True},
  784. {"id": "remove_urls_emails", "enabled": False},
  785. ],
  786. "segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50},
  787. },
  788. "limits": {
  789. "indexing_max_segmentation_tokens_length": dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH,
  790. },
  791. }
  792. # 批量删除
  793. @staticmethod
  794. def delete_templates(dataset: Dataset, template_ids: list[str]):
  795. templates = db.session.query(Template).filter(Template.id.in_(template_ids)).all()
  796. file_ids = [
  797. template.data_source_info_dict["upload_file_id"]
  798. for template in templates
  799. if template.data_source_type == "upload_file"
  800. ]
  801. batch_clean_template_task.delay(template_ids, dataset.id, dataset.doc_form, file_ids)
  802. for template in templates:
  803. db.session.delete(template)
  804. db.session.commit()
  805. @staticmethod
  806. def delete_template(template):
  807. file_id = None
  808. if template.data_source_type == "upload_file":
  809. if template.data_source_info:
  810. data_source_info = template.data_source_info_dict
  811. if data_source_info and "upload_file_id" in data_source_info:
  812. file_id = data_source_info["upload_file_id"]
  813. template_was_deleted.send(template.id, file_id=file_id)
  814. db.session.delete(template)
  815. db.session.commit()
  816. @staticmethod
  817. def save_template_with_dataset_id(
  818. upload_file: UploadFile,
  819. dataset: Dataset,
  820. account: Account | Any,
  821. dataset_process_rule: Optional[DatasetProcessRule] = None,
  822. created_from: str = "web",
  823. ):
  824. batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999))
  825. # save process rule
  826. lock_name = "add_template_lock_dataset_id_{}".format(dataset.id)
  827. with redis_client.lock(lock_name, timeout=600):
  828. position = TemplateService.get_templates_position(dataset.id)
  829. if not upload_file:
  830. raise FileNotExistsError()
  831. file_name = upload_file.name
  832. file_id = upload_file.id
  833. file_url = upload_file.key
  834. data_source_info = {"upload_file_id": upload_file.id}
  835. template = TemplateService.build_template(
  836. dataset,
  837. # dataset_process_rule.id, # type: ignore
  838. # data_source_type,
  839. data_source_info,
  840. created_from,
  841. position,
  842. account,
  843. file_id,
  844. file_name,
  845. batch,
  846. file_url,
  847. )
  848. db.session.add(template)
  849. db.session.flush()
  850. db.session.commit()
  851. templates = []
  852. templates.append(template)
  853. position += 1
  854. return templates, batch
  855. @staticmethod
  856. def get_templates_position(dataset_id):
  857. template = Template.query.filter_by(dataset_id=dataset_id).order_by(Template.position.desc()).first()
  858. if template:
  859. return template.position + 1
  860. else:
  861. return 1
  862. @staticmethod
  863. def build_template(
  864. dataset: Dataset,
  865. # process_rule_id: str,
  866. # data_source_type: 'upload_file',
  867. data_source_info: dict,
  868. created_from: str,
  869. position: int,
  870. account: Account,
  871. file_id: str,
  872. file_name: str,
  873. batch: str,
  874. file_url: str,
  875. ):
  876. template = Template(
  877. tenant_id=dataset.tenant_id,
  878. dataset_id=dataset.id,
  879. position=position,
  880. data_source_type="upload_file",
  881. data_source_info=json.dumps(data_source_info),
  882. # dataset_process_rule_id=process_rule_id,
  883. batch=batch,
  884. name=file_name,
  885. created_from=created_from,
  886. created_by=account.id,
  887. file_id=file_id,
  888. file_url="./storage/" + file_url,
  889. )
  890. return template
  891. @staticmethod
  892. def get_templates(template_id) -> Optional[Template]:
  893. if template_id:
  894. template: Optional[Template] = Template.query.filter_by(id=template_id).first()
  895. return template
  896. else:
  897. return None
  898. class DocumentService:
  899. DEFAULT_RULES: dict[str, Any] = {
  900. "mode": "custom",
  901. "rules": {
  902. "pre_processing_rules": [
  903. {"id": "remove_extra_spaces", "enabled": True},
  904. {"id": "remove_urls_emails", "enabled": False},
  905. ],
  906. "segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50},
  907. },
  908. "limits": {
  909. "indexing_max_segmentation_tokens_length": dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH,
  910. },
  911. }
  912. DOCUMENT_METADATA_SCHEMA: dict[str, Any] = {
  913. "book": {
  914. "title": str,
  915. "language": str,
  916. "author": str,
  917. "publisher": str,
  918. "publication_date": str,
  919. "isbn": str,
  920. "category": str,
  921. },
  922. "web_page": {
  923. "title": str,
  924. "url": str,
  925. "language": str,
  926. "publish_date": str,
  927. "author/publisher": str,
  928. "topic/keywords": str,
  929. "description": str,
  930. },
  931. "paper": {
  932. "title": str,
  933. "language": str,
  934. "author": str,
  935. "publish_date": str,
  936. "journal/conference_name": str,
  937. "volume/issue/page_numbers": str,
  938. "doi": str,
  939. "topic/keywords": str,
  940. "abstract": str,
  941. },
  942. "social_media_post": {
  943. "platform": str,
  944. "author/username": str,
  945. "publish_date": str,
  946. "post_url": str,
  947. "topic/tags": str,
  948. },
  949. "wikipedia_entry": {
  950. "title": str,
  951. "language": str,
  952. "web_page_url": str,
  953. "last_edit_date": str,
  954. "editor/contributor": str,
  955. "summary/introduction": str,
  956. },
  957. "personal_document": {
  958. "title": str,
  959. "author": str,
  960. "creation_date": str,
  961. "last_modified_date": str,
  962. "document_type": str,
  963. "tags/category": str,
  964. },
  965. "business_document": {
  966. "title": str,
  967. "author": str,
  968. "creation_date": str,
  969. "last_modified_date": str,
  970. "document_type": str,
  971. "department/team": str,
  972. },
  973. "im_chat_log": {
  974. "chat_platform": str,
  975. "chat_participants/group_name": str,
  976. "start_date": str,
  977. "end_date": str,
  978. "summary": str,
  979. },
  980. "synced_from_notion": {
  981. "title": str,
  982. "language": str,
  983. "author/creator": str,
  984. "creation_date": str,
  985. "last_modified_date": str,
  986. "notion_page_link": str,
  987. "category/tags": str,
  988. "description": str,
  989. },
  990. "synced_from_github": {
  991. "repository_name": str,
  992. "repository_description": str,
  993. "repository_owner/organization": str,
  994. "code_filename": str,
  995. "code_file_path": str,
  996. "programming_language": str,
  997. "github_link": str,
  998. "open_source_license": str,
  999. "commit_date": str,
  1000. "commit_author": str,
  1001. },
  1002. "others": dict,
  1003. }
  1004. @staticmethod
  1005. def get_document(dataset_id: str, document_id: Optional[str] = None) -> Optional[Document]:
  1006. if document_id:
  1007. document = (
  1008. db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
  1009. )
  1010. return document
  1011. else:
  1012. return None
  1013. @staticmethod
  1014. def get_document_by_id(document_id: str) -> Optional[Document]:
  1015. document = db.session.query(Document).filter(Document.id == document_id).first()
  1016. return document
  1017. @staticmethod
  1018. def get_document_by_ids(document_ids: list[str]) -> list[Document]:
  1019. documents = (
  1020. db.session.query(Document)
  1021. .filter(
  1022. Document.id.in_(document_ids),
  1023. Document.enabled == True,
  1024. Document.indexing_status == "completed",
  1025. Document.archived == False,
  1026. )
  1027. .all()
  1028. )
  1029. return documents
  1030. @staticmethod
  1031. def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
  1032. documents = (
  1033. db.session.query(Document)
  1034. .filter(
  1035. Document.dataset_id == dataset_id,
  1036. Document.enabled == True,
  1037. )
  1038. .all()
  1039. )
  1040. return documents
  1041. @staticmethod
  1042. def get_working_documents_by_dataset_id(dataset_id: str) -> list[Document]:
  1043. documents = (
  1044. db.session.query(Document)
  1045. .filter(
  1046. Document.dataset_id == dataset_id,
  1047. Document.enabled == True,
  1048. Document.indexing_status == "completed",
  1049. Document.archived == False,
  1050. )
  1051. .all()
  1052. )
  1053. return documents
  1054. @staticmethod
  1055. def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
  1056. documents = (
  1057. db.session.query(Document)
  1058. .filter(Document.dataset_id == dataset_id, Document.indexing_status.in_(["error", "paused"]))
  1059. .all()
  1060. )
  1061. return documents
  1062. @staticmethod
  1063. def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
  1064. documents = (
  1065. db.session.query(Document)
  1066. .filter(
  1067. Document.batch == batch,
  1068. Document.dataset_id == dataset_id,
  1069. Document.tenant_id == current_user.current_tenant_id,
  1070. )
  1071. .all()
  1072. )
  1073. return documents
  1074. @staticmethod
  1075. def get_document_file_detail(file_id: str):
  1076. file_detail = db.session.query(UploadFile).filter(UploadFile.id == file_id).one_or_none()
  1077. return file_detail
  1078. @staticmethod
  1079. def check_archived(document):
  1080. if document.archived:
  1081. return True
  1082. else:
  1083. return False
  1084. @staticmethod
  1085. def delete_document(document):
  1086. # trigger document_was_deleted signal
  1087. file_id = None
  1088. if document.data_source_type == "upload_file":
  1089. if document.data_source_info:
  1090. data_source_info = document.data_source_info_dict
  1091. if data_source_info and "upload_file_id" in data_source_info:
  1092. file_id = data_source_info["upload_file_id"]
  1093. document_was_deleted.send(
  1094. document.id, dataset_id=document.dataset_id, doc_form=document.doc_form, file_id=file_id
  1095. )
  1096. db.session.delete(document)
  1097. db.session.commit()
  1098. @staticmethod
  1099. def delete_documents(dataset: Dataset, document_ids: list[str]):
  1100. documents = db.session.query(Document).filter(Document.id.in_(document_ids)).all()
  1101. file_ids = [
  1102. document.data_source_info_dict["upload_file_id"]
  1103. for document in documents
  1104. if document.data_source_type == "upload_file"
  1105. ]
  1106. batch_clean_document_task.delay(document_ids, dataset.id, dataset.doc_form, file_ids)
  1107. for document in documents:
  1108. db.session.delete(document)
  1109. db.session.commit()
  1110. @staticmethod
  1111. def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
  1112. dataset = DatasetService.get_dataset(dataset_id)
  1113. if not dataset:
  1114. raise ValueError("Dataset not found.")
  1115. document = DocumentService.get_document(dataset_id, document_id)
  1116. if not document:
  1117. raise ValueError("Document not found.")
  1118. if document.tenant_id != current_user.current_tenant_id:
  1119. raise ValueError("No permission.")
  1120. if dataset.built_in_field_enabled:
  1121. if document.doc_metadata:
  1122. doc_metadata = copy.deepcopy(document.doc_metadata)
  1123. doc_metadata[BuiltInField.document_name.value] = name
  1124. document.doc_metadata = doc_metadata
  1125. document.name = name
  1126. db.session.add(document)
  1127. db.session.commit()
  1128. return document
  1129. @staticmethod
  1130. def pause_document(document):
  1131. if document.indexing_status not in {"waiting", "parsing", "cleaning", "splitting", "indexing"}:
  1132. raise DocumentIndexingError()
  1133. # update document to be paused
  1134. document.is_paused = True
  1135. document.paused_by = current_user.id
  1136. document.paused_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  1137. db.session.add(document)
  1138. db.session.commit()
  1139. # set document paused flag
  1140. indexing_cache_key = "document_{}_is_paused".format(document.id)
  1141. redis_client.setnx(indexing_cache_key, "True")
  1142. @staticmethod
  1143. def recover_document(document):
  1144. if not document.is_paused:
  1145. raise DocumentIndexingError()
  1146. # update document to be recover
  1147. document.is_paused = False
  1148. document.paused_by = None
  1149. document.paused_at = None
  1150. db.session.add(document)
  1151. db.session.commit()
  1152. # delete paused flag
  1153. indexing_cache_key = "document_{}_is_paused".format(document.id)
  1154. redis_client.delete(indexing_cache_key)
  1155. # trigger async task
  1156. recover_document_indexing_task.delay(document.dataset_id, document.id)
  1157. @staticmethod
  1158. def retry_document(dataset_id: str, documents: list[Document]):
  1159. for document in documents:
  1160. # add retry flag
  1161. retry_indexing_cache_key = "document_{}_is_retried".format(document.id)
  1162. cache_result = redis_client.get(retry_indexing_cache_key)
  1163. if cache_result is not None:
  1164. raise ValueError("Document is being retried, please try again later")
  1165. # retry document indexing
  1166. document.indexing_status = "waiting"
  1167. db.session.add(document)
  1168. db.session.commit()
  1169. redis_client.setex(retry_indexing_cache_key, 600, 1)
  1170. # trigger async task
  1171. document_ids = [document.id for document in documents]
  1172. retry_document_indexing_task.delay(dataset_id, document_ids)
  1173. @staticmethod
  1174. def sync_website_document(dataset_id: str, document: Document):
  1175. # add sync flag
  1176. sync_indexing_cache_key = "document_{}_is_sync".format(document.id)
  1177. cache_result = redis_client.get(sync_indexing_cache_key)
  1178. if cache_result is not None:
  1179. raise ValueError("Document is being synced, please try again later")
  1180. # sync document indexing
  1181. document.indexing_status = "waiting"
  1182. data_source_info = document.data_source_info_dict
  1183. data_source_info["mode"] = "scrape"
  1184. document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
  1185. db.session.add(document)
  1186. db.session.commit()
  1187. redis_client.setex(sync_indexing_cache_key, 600, 1)
  1188. sync_website_document_indexing_task.delay(dataset_id, document.id)
  1189. @staticmethod
  1190. def get_documents_position(dataset_id):
  1191. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  1192. if document:
  1193. return document.position + 1
  1194. else:
  1195. return 1
  1196. @staticmethod
  1197. def save_document_with_dataset_id(
  1198. dataset: Dataset,
  1199. knowledge_config: KnowledgeConfig,
  1200. account: Account | Any,
  1201. dataset_process_rule: Optional[DatasetProcessRule] = None,
  1202. created_from: str = "web",
  1203. ):
  1204. # check document limit
  1205. features = FeatureService.get_features(current_user.current_tenant_id)
  1206. if features.billing.enabled:
  1207. if not knowledge_config.original_document_id:
  1208. count = 0
  1209. if knowledge_config.data_source:
  1210. if knowledge_config.data_source.info_list.data_source_type == "upload_file":
  1211. upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
  1212. count = len(upload_file_list)
  1213. elif knowledge_config.data_source.info_list.data_source_type == "notion_import":
  1214. notion_info_list = knowledge_config.data_source.info_list.notion_info_list
  1215. for notion_info in notion_info_list: # type: ignore
  1216. count = count + len(notion_info.pages)
  1217. elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":
  1218. website_info = knowledge_config.data_source.info_list.website_info_list
  1219. count = len(website_info.urls) # type: ignore
  1220. batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
  1221. if count > batch_upload_limit:
  1222. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  1223. DocumentService.check_documents_upload_quota(count, features)
  1224. # if dataset is empty, update dataset data_source_type
  1225. if not dataset.data_source_type:
  1226. dataset.data_source_type = knowledge_config.data_source.info_list.data_source_type # type: ignore
  1227. if not dataset.indexing_technique:
  1228. if knowledge_config.indexing_technique not in Dataset.INDEXING_TECHNIQUE_LIST:
  1229. raise ValueError("Indexing technique is invalid")
  1230. dataset.indexing_technique = knowledge_config.indexing_technique
  1231. if knowledge_config.indexing_technique == "high_quality":
  1232. model_manager = ModelManager()
  1233. if knowledge_config.embedding_model and knowledge_config.embedding_model_provider:
  1234. dataset_embedding_model = knowledge_config.embedding_model
  1235. dataset_embedding_model_provider = knowledge_config.embedding_model_provider
  1236. else:
  1237. embedding_model = model_manager.get_default_model_instance(
  1238. tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
  1239. )
  1240. dataset_embedding_model = embedding_model.model
  1241. dataset_embedding_model_provider = embedding_model.provider
  1242. dataset.embedding_model = dataset_embedding_model
  1243. dataset.embedding_model_provider = dataset_embedding_model_provider
  1244. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  1245. dataset_embedding_model_provider, dataset_embedding_model
  1246. )
  1247. dataset.collection_binding_id = dataset_collection_binding.id
  1248. if not dataset.retrieval_model:
  1249. default_retrieval_model = {
  1250. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  1251. "reranking_enable": False,
  1252. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  1253. "top_k": 2,
  1254. "score_threshold_enabled": False,
  1255. }
  1256. dataset.retrieval_model = (
  1257. knowledge_config.retrieval_model.model_dump()
  1258. if knowledge_config.retrieval_model
  1259. else default_retrieval_model
  1260. ) # type: ignore
  1261. documents = []
  1262. if knowledge_config.original_document_id:
  1263. document = DocumentService.update_document_with_dataset_id(dataset, knowledge_config, account)
  1264. documents.append(document)
  1265. batch = document.batch
  1266. else:
  1267. batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999))
  1268. # save process rule
  1269. if not dataset_process_rule:
  1270. process_rule = knowledge_config.process_rule
  1271. if process_rule:
  1272. if process_rule.mode in ("custom", "hierarchical"):
  1273. dataset_process_rule = DatasetProcessRule(
  1274. dataset_id=dataset.id,
  1275. mode=process_rule.mode,
  1276. rules=process_rule.rules.model_dump_json() if process_rule.rules else None,
  1277. created_by=account.id,
  1278. )
  1279. elif process_rule.mode == "automatic":
  1280. dataset_process_rule = DatasetProcessRule(
  1281. dataset_id=dataset.id,
  1282. mode=process_rule.mode,
  1283. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  1284. created_by=account.id,
  1285. )
  1286. else:
  1287. logging.warn(
  1288. f"Invalid process rule mode: {process_rule.mode}, can not find dataset process rule"
  1289. )
  1290. return
  1291. db.session.add(dataset_process_rule)
  1292. db.session.commit()
  1293. lock_name = "add_document_lock_dataset_id_{}".format(dataset.id)
  1294. with redis_client.lock(lock_name, timeout=600):
  1295. position = DocumentService.get_documents_position(dataset.id)
  1296. document_ids = []
  1297. duplicate_document_ids = []
  1298. if knowledge_config.data_source.info_list.data_source_type == "upload_file": # type: ignore
  1299. upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
  1300. for file_id in upload_file_list:
  1301. file = (
  1302. db.session.query(UploadFile)
  1303. .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
  1304. .first()
  1305. )
  1306. # raise error if file not found
  1307. if not file:
  1308. raise FileNotExistsError()
  1309. file_name = file.name
  1310. data_source_info = {
  1311. "upload_file_id": file_id,
  1312. }
  1313. # check duplicate
  1314. if knowledge_config.duplicate:
  1315. document = Document.query.filter_by(
  1316. dataset_id=dataset.id,
  1317. tenant_id=current_user.current_tenant_id,
  1318. data_source_type="upload_file",
  1319. enabled=True,
  1320. name=file_name,
  1321. ).first()
  1322. if document:
  1323. document.dataset_process_rule_id = dataset_process_rule.id # type: ignore
  1324. document.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  1325. document.created_from = created_from
  1326. document.doc_form = knowledge_config.doc_form
  1327. document.doc_language = knowledge_config.doc_language
  1328. document.data_source_info = json.dumps(data_source_info)
  1329. document.batch = batch
  1330. document.indexing_status = "waiting"
  1331. db.session.add(document)
  1332. documents.append(document)
  1333. duplicate_document_ids.append(document.id)
  1334. continue
  1335. document = DocumentService.build_document(
  1336. dataset,
  1337. dataset_process_rule.id, # type: ignore
  1338. knowledge_config.data_source.info_list.data_source_type, # type: ignore
  1339. knowledge_config.doc_form,
  1340. knowledge_config.doc_language,
  1341. data_source_info,
  1342. created_from,
  1343. position,
  1344. account,
  1345. file_name,
  1346. batch,
  1347. )
  1348. db.session.add(document)
  1349. db.session.flush()
  1350. document_ids.append(document.id)
  1351. documents.append(document)
  1352. position += 1
  1353. elif knowledge_config.data_source.info_list.data_source_type == "notion_import": # type: ignore
  1354. notion_info_list = knowledge_config.data_source.info_list.notion_info_list # type: ignore
  1355. if not notion_info_list:
  1356. raise ValueError("No notion info list found.")
  1357. exist_page_ids = []
  1358. exist_document = {}
  1359. documents = Document.query.filter_by(
  1360. dataset_id=dataset.id,
  1361. tenant_id=current_user.current_tenant_id,
  1362. data_source_type="notion_import",
  1363. enabled=True,
  1364. ).all()
  1365. if documents:
  1366. for document in documents:
  1367. data_source_info = json.loads(document.data_source_info)
  1368. exist_page_ids.append(data_source_info["notion_page_id"])
  1369. exist_document[data_source_info["notion_page_id"]] = document.id
  1370. for notion_info in notion_info_list:
  1371. workspace_id = notion_info.workspace_id
  1372. data_source_binding = DataSourceOauthBinding.query.filter(
  1373. db.and_(
  1374. DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
  1375. DataSourceOauthBinding.provider == "notion",
  1376. DataSourceOauthBinding.disabled == False,
  1377. DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
  1378. )
  1379. ).first()
  1380. if not data_source_binding:
  1381. raise ValueError("Data source binding not found.")
  1382. for page in notion_info.pages:
  1383. if page.page_id not in exist_page_ids:
  1384. data_source_info = {
  1385. "notion_workspace_id": workspace_id,
  1386. "notion_page_id": page.page_id,
  1387. "notion_page_icon": page.page_icon.model_dump() if page.page_icon else None,
  1388. "type": page.type,
  1389. }
  1390. # Truncate page name to 255 characters to prevent DB field length errors
  1391. truncated_page_name = page.page_name[:255] if page.page_name else "nopagename"
  1392. document = DocumentService.build_document(
  1393. dataset,
  1394. dataset_process_rule.id, # type: ignore
  1395. knowledge_config.data_source.info_list.data_source_type, # type: ignore
  1396. knowledge_config.doc_form,
  1397. knowledge_config.doc_language,
  1398. data_source_info,
  1399. created_from,
  1400. position,
  1401. account,
  1402. truncated_page_name,
  1403. batch,
  1404. )
  1405. db.session.add(document)
  1406. db.session.flush()
  1407. document_ids.append(document.id)
  1408. documents.append(document)
  1409. position += 1
  1410. else:
  1411. exist_document.pop(page.page_id)
  1412. # delete not selected documents
  1413. if len(exist_document) > 0:
  1414. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  1415. elif knowledge_config.data_source.info_list.data_source_type == "website_crawl": # type: ignore
  1416. website_info = knowledge_config.data_source.info_list.website_info_list # type: ignore
  1417. if not website_info:
  1418. raise ValueError("No website info list found.")
  1419. urls = website_info.urls
  1420. for url in urls:
  1421. data_source_info = {
  1422. "url": url,
  1423. "provider": website_info.provider,
  1424. "job_id": website_info.job_id,
  1425. "only_main_content": website_info.only_main_content,
  1426. "mode": "crawl",
  1427. }
  1428. if len(url) > 255:
  1429. document_name = url[:200] + "..."
  1430. else:
  1431. document_name = url
  1432. document = DocumentService.build_document(
  1433. dataset,
  1434. dataset_process_rule.id, # type: ignore
  1435. knowledge_config.data_source.info_list.data_source_type, # type: ignore
  1436. knowledge_config.doc_form,
  1437. knowledge_config.doc_language,
  1438. data_source_info,
  1439. created_from,
  1440. position,
  1441. account,
  1442. document_name,
  1443. batch,
  1444. )
  1445. db.session.add(document)
  1446. db.session.flush()
  1447. document_ids.append(document.id)
  1448. documents.append(document)
  1449. position += 1
  1450. db.session.commit()
  1451. # trigger async task
  1452. if document_ids:
  1453. document_indexing_task.delay(dataset.id, document_ids)
  1454. if duplicate_document_ids:
  1455. duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
  1456. return documents, batch
  1457. @staticmethod
  1458. def check_documents_upload_quota(count: int, features: FeatureModel):
  1459. can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
  1460. if count > can_upload_size:
  1461. raise ValueError(
  1462. f"You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded."
  1463. )
  1464. @staticmethod
  1465. def build_document(
  1466. dataset: Dataset,
  1467. process_rule_id: str,
  1468. data_source_type: str,
  1469. document_form: str,
  1470. document_language: str,
  1471. data_source_info: dict,
  1472. created_from: str,
  1473. position: int,
  1474. account: Account,
  1475. name: str,
  1476. batch: str,
  1477. ):
  1478. if account.current_role == TenantAccountRole.EDITOR:
  1479. document = Document(
  1480. tenant_id=dataset.tenant_id,
  1481. dataset_id=dataset.id,
  1482. position=position,
  1483. data_source_type=data_source_type,
  1484. data_source_info=json.dumps(data_source_info),
  1485. dataset_process_rule_id=process_rule_id,
  1486. batch=batch,
  1487. name=name,
  1488. created_from=created_from,
  1489. created_by=account.id,
  1490. doc_form=document_form,
  1491. doc_language=document_language,
  1492. check_status=1,
  1493. enable_applicant=account.id,
  1494. )
  1495. else:
  1496. document = Document(
  1497. tenant_id=dataset.tenant_id,
  1498. dataset_id=dataset.id,
  1499. position=position,
  1500. data_source_type=data_source_type,
  1501. data_source_info=json.dumps(data_source_info),
  1502. dataset_process_rule_id=process_rule_id,
  1503. batch=batch,
  1504. name=name,
  1505. created_from=created_from,
  1506. created_by=account.id,
  1507. doc_form=document_form,
  1508. doc_language=document_language,
  1509. check_status=3,
  1510. check_by=account.id,
  1511. enable_applicant=account.id,
  1512. enabled=True,
  1513. )
  1514. doc_metadata = {}
  1515. if dataset.built_in_field_enabled:
  1516. doc_metadata = {
  1517. BuiltInField.document_name: name,
  1518. BuiltInField.uploader: account.name,
  1519. BuiltInField.upload_date: datetime.datetime.now(datetime.UTC).strftime("%Y-%m-%d %H:%M:%S"),
  1520. BuiltInField.last_update_date: datetime.datetime.now(datetime.UTC).strftime("%Y-%m-%d %H:%M:%S"),
  1521. BuiltInField.source: data_source_type,
  1522. }
  1523. if doc_metadata:
  1524. document.doc_metadata = doc_metadata
  1525. return document
  1526. @staticmethod
  1527. def get_tenant_documents_count():
  1528. documents_count = Document.query.filter(
  1529. Document.completed_at.isnot(None),
  1530. Document.enabled == True,
  1531. Document.archived == False,
  1532. Document.tenant_id == current_user.current_tenant_id,
  1533. ).count()
  1534. return documents_count
  1535. @staticmethod
  1536. def update_document_with_dataset_id(
  1537. dataset: Dataset,
  1538. document_data: KnowledgeConfig,
  1539. account: Account,
  1540. dataset_process_rule: Optional[DatasetProcessRule] = None,
  1541. created_from: str = "web",
  1542. ):
  1543. DatasetService.check_dataset_model_setting(dataset)
  1544. document = DocumentService.get_document(dataset.id, document_data.original_document_id)
  1545. if document is None:
  1546. raise NotFound("Document not found")
  1547. if document.display_status != "available":
  1548. raise ValueError("Document is not available")
  1549. # save process rule
  1550. if document_data.process_rule:
  1551. process_rule = document_data.process_rule
  1552. if process_rule.mode in {"custom", "hierarchical"}:
  1553. dataset_process_rule = DatasetProcessRule(
  1554. dataset_id=dataset.id,
  1555. mode=process_rule.mode,
  1556. rules=process_rule.rules.model_dump_json() if process_rule.rules else None,
  1557. created_by=account.id,
  1558. )
  1559. elif process_rule.mode == "automatic":
  1560. dataset_process_rule = DatasetProcessRule(
  1561. dataset_id=dataset.id,
  1562. mode=process_rule.mode,
  1563. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  1564. created_by=account.id,
  1565. )
  1566. if dataset_process_rule is not None:
  1567. db.session.add(dataset_process_rule)
  1568. db.session.commit()
  1569. document.dataset_process_rule_id = dataset_process_rule.id
  1570. # update document data source
  1571. if document_data.data_source:
  1572. file_name = ""
  1573. data_source_info = {}
  1574. if document_data.data_source.info_list.data_source_type == "upload_file":
  1575. if not document_data.data_source.info_list.file_info_list:
  1576. raise ValueError("No file info list found.")
  1577. upload_file_list = document_data.data_source.info_list.file_info_list.file_ids
  1578. for file_id in upload_file_list:
  1579. file = (
  1580. db.session.query(UploadFile)
  1581. .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
  1582. .first()
  1583. )
  1584. # raise error if file not found
  1585. if not file:
  1586. raise FileNotExistsError()
  1587. file_name = file.name
  1588. data_source_info = {
  1589. "upload_file_id": file_id,
  1590. }
  1591. elif document_data.data_source.info_list.data_source_type == "notion_import":
  1592. if not document_data.data_source.info_list.notion_info_list:
  1593. raise ValueError("No notion info list found.")
  1594. notion_info_list = document_data.data_source.info_list.notion_info_list
  1595. for notion_info in notion_info_list:
  1596. workspace_id = notion_info.workspace_id
  1597. data_source_binding = DataSourceOauthBinding.query.filter(
  1598. db.and_(
  1599. DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
  1600. DataSourceOauthBinding.provider == "notion",
  1601. DataSourceOauthBinding.disabled == False,
  1602. DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
  1603. )
  1604. ).first()
  1605. if not data_source_binding:
  1606. raise ValueError("Data source binding not found.")
  1607. for page in notion_info.pages:
  1608. data_source_info = {
  1609. "notion_workspace_id": workspace_id,
  1610. "notion_page_id": page.page_id,
  1611. "notion_page_icon": page.page_icon.model_dump() if page.page_icon else None, # type: ignore
  1612. "type": page.type,
  1613. }
  1614. elif document_data.data_source.info_list.data_source_type == "website_crawl":
  1615. website_info = document_data.data_source.info_list.website_info_list
  1616. if website_info:
  1617. urls = website_info.urls
  1618. for url in urls:
  1619. data_source_info = {
  1620. "url": url,
  1621. "provider": website_info.provider,
  1622. "job_id": website_info.job_id,
  1623. "only_main_content": website_info.only_main_content, # type: ignore
  1624. "mode": "crawl",
  1625. }
  1626. document.data_source_type = document_data.data_source.info_list.data_source_type
  1627. document.data_source_info = json.dumps(data_source_info)
  1628. document.name = file_name
  1629. # update document name
  1630. if document_data.name:
  1631. document.name = document_data.name
  1632. # update document to be waiting
  1633. document.indexing_status = "waiting"
  1634. document.completed_at = None
  1635. document.processing_started_at = None
  1636. document.parsing_completed_at = None
  1637. document.cleaning_completed_at = None
  1638. document.splitting_completed_at = None
  1639. document.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  1640. document.created_from = created_from
  1641. document.doc_form = document_data.doc_form
  1642. db.session.add(document)
  1643. db.session.commit()
  1644. # update document segment
  1645. update_params = {DocumentSegment.status: "re_segment"}
  1646. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  1647. db.session.commit()
  1648. # trigger async task
  1649. document_indexing_update_task.delay(document.dataset_id, document.id)
  1650. return document
  1651. @staticmethod
  1652. def save_document_without_dataset_id(tenant_id: str, knowledge_config: KnowledgeConfig, account: Account):
  1653. features = FeatureService.get_features(current_user.current_tenant_id)
  1654. if features.billing.enabled:
  1655. count = 0
  1656. if knowledge_config.data_source.info_list.data_source_type == "upload_file": # type: ignore
  1657. upload_file_list = (
  1658. knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
  1659. if knowledge_config.data_source.info_list.file_info_list # type: ignore
  1660. else []
  1661. )
  1662. count = len(upload_file_list)
  1663. elif knowledge_config.data_source.info_list.data_source_type == "notion_import": # type: ignore
  1664. notion_info_list = knowledge_config.data_source.info_list.notion_info_list # type: ignore
  1665. if notion_info_list:
  1666. for notion_info in notion_info_list:
  1667. count = count + len(notion_info.pages)
  1668. elif knowledge_config.data_source.info_list.data_source_type == "website_crawl": # type: ignore
  1669. website_info = knowledge_config.data_source.info_list.website_info_list # type: ignore
  1670. if website_info:
  1671. count = len(website_info.urls)
  1672. batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
  1673. if count > batch_upload_limit:
  1674. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  1675. DocumentService.check_documents_upload_quota(count, features)
  1676. dataset_collection_binding_id = None
  1677. retrieval_model = None
  1678. if knowledge_config.indexing_technique == "high_quality":
  1679. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  1680. knowledge_config.embedding_model_provider, # type: ignore
  1681. knowledge_config.embedding_model, # type: ignore
  1682. )
  1683. dataset_collection_binding_id = dataset_collection_binding.id
  1684. if knowledge_config.retrieval_model:
  1685. retrieval_model = knowledge_config.retrieval_model
  1686. else:
  1687. retrieval_model = RetrievalModel(
  1688. search_method=RetrievalMethod.SEMANTIC_SEARCH.value,
  1689. reranking_enable=False,
  1690. reranking_model=RerankingModel(reranking_provider_name="", reranking_model_name=""),
  1691. top_k=2,
  1692. score_threshold_enabled=False,
  1693. )
  1694. # save dataset
  1695. dataset = Dataset(
  1696. tenant_id=tenant_id,
  1697. name="",
  1698. data_source_type=knowledge_config.data_source.info_list.data_source_type, # type: ignore
  1699. indexing_technique=knowledge_config.indexing_technique,
  1700. created_by=account.id,
  1701. embedding_model=knowledge_config.embedding_model,
  1702. embedding_model_provider=knowledge_config.embedding_model_provider,
  1703. collection_binding_id=dataset_collection_binding_id,
  1704. retrieval_model=retrieval_model.model_dump() if retrieval_model else None,
  1705. )
  1706. db.session.add(dataset) # type: ignore
  1707. db.session.flush()
  1708. documents, batch = DocumentService.save_document_with_dataset_id(dataset, knowledge_config, account)
  1709. cut_length = 18
  1710. cut_name = documents[0].name[:cut_length]
  1711. dataset.name = cut_name + "..."
  1712. dataset.description = "useful for when you want to answer queries about the " + documents[0].name
  1713. db.session.commit()
  1714. return dataset, documents, batch
  1715. @classmethod
  1716. def document_create_args_validate(cls, knowledge_config: KnowledgeConfig):
  1717. if not knowledge_config.data_source and not knowledge_config.process_rule:
  1718. raise ValueError("Data source or Process rule is required")
  1719. else:
  1720. if knowledge_config.data_source:
  1721. DocumentService.data_source_args_validate(knowledge_config)
  1722. if knowledge_config.process_rule:
  1723. DocumentService.process_rule_args_validate(knowledge_config)
  1724. @classmethod
  1725. def data_source_args_validate(cls, knowledge_config: KnowledgeConfig):
  1726. if not knowledge_config.data_source:
  1727. raise ValueError("Data source is required")
  1728. if knowledge_config.data_source.info_list.data_source_type not in Document.DATA_SOURCES:
  1729. raise ValueError("Data source type is invalid")
  1730. if not knowledge_config.data_source.info_list:
  1731. raise ValueError("Data source info is required")
  1732. if knowledge_config.data_source.info_list.data_source_type == "upload_file":
  1733. if not knowledge_config.data_source.info_list.file_info_list:
  1734. raise ValueError("File source info is required")
  1735. if knowledge_config.data_source.info_list.data_source_type == "notion_import":
  1736. if not knowledge_config.data_source.info_list.notion_info_list:
  1737. raise ValueError("Notion source info is required")
  1738. if knowledge_config.data_source.info_list.data_source_type == "website_crawl":
  1739. if not knowledge_config.data_source.info_list.website_info_list:
  1740. raise ValueError("Website source info is required")
  1741. @classmethod
  1742. def process_rule_args_validate(cls, knowledge_config: KnowledgeConfig):
  1743. if not knowledge_config.process_rule:
  1744. raise ValueError("Process rule is required")
  1745. if not knowledge_config.process_rule.mode:
  1746. raise ValueError("Process rule mode is required")
  1747. if knowledge_config.process_rule.mode not in DatasetProcessRule.MODES:
  1748. raise ValueError("Process rule mode is invalid")
  1749. if knowledge_config.process_rule.mode == "automatic":
  1750. knowledge_config.process_rule.rules = None
  1751. else:
  1752. if not knowledge_config.process_rule.rules:
  1753. raise ValueError("Process rule rules is required")
  1754. if knowledge_config.process_rule.rules.pre_processing_rules is None:
  1755. raise ValueError("Process rule pre_processing_rules is required")
  1756. unique_pre_processing_rule_dicts = {}
  1757. for pre_processing_rule in knowledge_config.process_rule.rules.pre_processing_rules:
  1758. if not pre_processing_rule.id:
  1759. raise ValueError("Process rule pre_processing_rules id is required")
  1760. if not isinstance(pre_processing_rule.enabled, bool):
  1761. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  1762. unique_pre_processing_rule_dicts[pre_processing_rule.id] = pre_processing_rule
  1763. knowledge_config.process_rule.rules.pre_processing_rules = list(unique_pre_processing_rule_dicts.values())
  1764. if not knowledge_config.process_rule.rules.segmentation:
  1765. raise ValueError("Process rule segmentation is required")
  1766. if not knowledge_config.process_rule.rules.segmentation.separator:
  1767. raise ValueError("Process rule segmentation separator is required")
  1768. if not isinstance(knowledge_config.process_rule.rules.segmentation.separator, str):
  1769. raise ValueError("Process rule segmentation separator is invalid")
  1770. if not (
  1771. knowledge_config.process_rule.mode == "hierarchical"
  1772. and knowledge_config.process_rule.rules.parent_mode == "full-doc"
  1773. ):
  1774. if not knowledge_config.process_rule.rules.segmentation.max_tokens:
  1775. raise ValueError("Process rule segmentation max_tokens is required")
  1776. if not isinstance(knowledge_config.process_rule.rules.segmentation.max_tokens, int):
  1777. raise ValueError("Process rule segmentation max_tokens is invalid")
  1778. @classmethod
  1779. def estimate_args_validate(cls, args: dict):
  1780. if "info_list" not in args or not args["info_list"]:
  1781. raise ValueError("Data source info is required")
  1782. if not isinstance(args["info_list"], dict):
  1783. raise ValueError("Data info is invalid")
  1784. if "process_rule" not in args or not args["process_rule"]:
  1785. raise ValueError("Process rule is required")
  1786. if not isinstance(args["process_rule"], dict):
  1787. raise ValueError("Process rule is invalid")
  1788. if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]:
  1789. raise ValueError("Process rule mode is required")
  1790. if args["process_rule"]["mode"] not in DatasetProcessRule.MODES:
  1791. raise ValueError("Process rule mode is invalid")
  1792. if args["process_rule"]["mode"] == "automatic":
  1793. args["process_rule"]["rules"] = {}
  1794. else:
  1795. if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]:
  1796. raise ValueError("Process rule rules is required")
  1797. if not isinstance(args["process_rule"]["rules"], dict):
  1798. raise ValueError("Process rule rules is invalid")
  1799. if (
  1800. "pre_processing_rules" not in args["process_rule"]["rules"]
  1801. or args["process_rule"]["rules"]["pre_processing_rules"] is None
  1802. ):
  1803. raise ValueError("Process rule pre_processing_rules is required")
  1804. if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list):
  1805. raise ValueError("Process rule pre_processing_rules is invalid")
  1806. unique_pre_processing_rule_dicts = {}
  1807. for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]:
  1808. if "id" not in pre_processing_rule or not pre_processing_rule["id"]:
  1809. raise ValueError("Process rule pre_processing_rules id is required")
  1810. if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  1811. raise ValueError("Process rule pre_processing_rules id is invalid")
  1812. if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None:
  1813. raise ValueError("Process rule pre_processing_rules enabled is required")
  1814. if not isinstance(pre_processing_rule["enabled"], bool):
  1815. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  1816. unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule
  1817. args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values())
  1818. if (
  1819. "segmentation" not in args["process_rule"]["rules"]
  1820. or args["process_rule"]["rules"]["segmentation"] is None
  1821. ):
  1822. raise ValueError("Process rule segmentation is required")
  1823. if not isinstance(args["process_rule"]["rules"]["segmentation"], dict):
  1824. raise ValueError("Process rule segmentation is invalid")
  1825. if (
  1826. "separator" not in args["process_rule"]["rules"]["segmentation"]
  1827. or not args["process_rule"]["rules"]["segmentation"]["separator"]
  1828. ):
  1829. raise ValueError("Process rule segmentation separator is required")
  1830. if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str):
  1831. raise ValueError("Process rule segmentation separator is invalid")
  1832. if (
  1833. "max_tokens" not in args["process_rule"]["rules"]["segmentation"]
  1834. or not args["process_rule"]["rules"]["segmentation"]["max_tokens"]
  1835. ):
  1836. raise ValueError("Process rule segmentation max_tokens is required")
  1837. if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):
  1838. raise ValueError("Process rule segmentation max_tokens is invalid")
  1839. class SegmentService:
  1840. @classmethod
  1841. def segment_create_args_validate(cls, args: dict, document: Document):
  1842. if document.doc_form == "qa_model":
  1843. if "answer" not in args or not args["answer"]:
  1844. raise ValueError("Answer is required")
  1845. if not args["answer"].strip():
  1846. raise ValueError("Answer is empty")
  1847. if "content" not in args or not args["content"] or not args["content"].strip():
  1848. raise ValueError("Content is empty")
  1849. @classmethod
  1850. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  1851. content = args["content"]
  1852. doc_id = str(uuid.uuid4())
  1853. segment_hash = helper.generate_text_hash(content)
  1854. tokens = 0
  1855. if dataset.indexing_technique == "high_quality":
  1856. model_manager = ModelManager()
  1857. embedding_model = model_manager.get_model_instance(
  1858. tenant_id=current_user.current_tenant_id,
  1859. provider=dataset.embedding_model_provider,
  1860. model_type=ModelType.TEXT_EMBEDDING,
  1861. model=dataset.embedding_model,
  1862. )
  1863. # calc embedding use tokens
  1864. tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]
  1865. lock_name = "add_segment_lock_document_id_{}".format(document.id)
  1866. with redis_client.lock(lock_name, timeout=600):
  1867. max_position = (
  1868. db.session.query(func.max(DocumentSegment.position))
  1869. .filter(DocumentSegment.document_id == document.id)
  1870. .scalar()
  1871. )
  1872. segment_document = DocumentSegment(
  1873. tenant_id=current_user.current_tenant_id,
  1874. dataset_id=document.dataset_id,
  1875. document_id=document.id,
  1876. index_node_id=doc_id,
  1877. index_node_hash=segment_hash,
  1878. position=max_position + 1 if max_position else 1,
  1879. content=content,
  1880. word_count=len(content),
  1881. tokens=tokens,
  1882. status="completed",
  1883. indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
  1884. completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
  1885. created_by=current_user.id,
  1886. )
  1887. if document.doc_form == "qa_model":
  1888. segment_document.word_count += len(args["answer"])
  1889. segment_document.answer = args["answer"]
  1890. db.session.add(segment_document)
  1891. # update document word count
  1892. document.word_count += segment_document.word_count
  1893. db.session.add(document)
  1894. db.session.commit()
  1895. # save vector index
  1896. try:
  1897. VectorService.create_segments_vector([args["keywords"]], [segment_document], dataset, document.doc_form)
  1898. except Exception as e:
  1899. logging.exception("create segment index failed")
  1900. segment_document.enabled = False
  1901. segment_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  1902. segment_document.status = "error"
  1903. segment_document.error = str(e)
  1904. db.session.commit()
  1905. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  1906. return segment
  1907. @classmethod
  1908. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  1909. lock_name = "multi_add_segment_lock_document_id_{}".format(document.id)
  1910. increment_word_count = 0
  1911. with redis_client.lock(lock_name, timeout=600):
  1912. embedding_model = None
  1913. if dataset.indexing_technique == "high_quality":
  1914. model_manager = ModelManager()
  1915. embedding_model = model_manager.get_model_instance(
  1916. tenant_id=current_user.current_tenant_id,
  1917. provider=dataset.embedding_model_provider,
  1918. model_type=ModelType.TEXT_EMBEDDING,
  1919. model=dataset.embedding_model,
  1920. )
  1921. max_position = (
  1922. db.session.query(func.max(DocumentSegment.position))
  1923. .filter(DocumentSegment.document_id == document.id)
  1924. .scalar()
  1925. )
  1926. pre_segment_data_list = []
  1927. segment_data_list = []
  1928. keywords_list = []
  1929. position = max_position + 1 if max_position else 1
  1930. for segment_item in segments:
  1931. content = segment_item["content"]
  1932. doc_id = str(uuid.uuid4())
  1933. segment_hash = helper.generate_text_hash(content)
  1934. tokens = 0
  1935. if dataset.indexing_technique == "high_quality" and embedding_model:
  1936. # calc embedding use tokens
  1937. if document.doc_form == "qa_model":
  1938. tokens = embedding_model.get_text_embedding_num_tokens(
  1939. texts=[content + segment_item["answer"]]
  1940. )[0]
  1941. else:
  1942. tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]
  1943. segment_document = DocumentSegment(
  1944. tenant_id=current_user.current_tenant_id,
  1945. dataset_id=document.dataset_id,
  1946. document_id=document.id,
  1947. index_node_id=doc_id,
  1948. index_node_hash=segment_hash,
  1949. position=position,
  1950. content=content,
  1951. word_count=len(content),
  1952. tokens=tokens,
  1953. status="completed",
  1954. indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
  1955. completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
  1956. created_by=current_user.id,
  1957. )
  1958. if document.doc_form == "qa_model":
  1959. segment_document.answer = segment_item["answer"]
  1960. segment_document.word_count += len(segment_item["answer"])
  1961. increment_word_count += segment_document.word_count
  1962. db.session.add(segment_document)
  1963. segment_data_list.append(segment_document)
  1964. position += 1
  1965. pre_segment_data_list.append(segment_document)
  1966. if "keywords" in segment_item:
  1967. keywords_list.append(segment_item["keywords"])
  1968. else:
  1969. keywords_list.append(None)
  1970. # update document word count
  1971. document.word_count += increment_word_count
  1972. db.session.add(document)
  1973. try:
  1974. # save vector index
  1975. VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset, document.doc_form)
  1976. except Exception as e:
  1977. logging.exception("create segment index failed")
  1978. for segment_document in segment_data_list:
  1979. segment_document.enabled = False
  1980. segment_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  1981. segment_document.status = "error"
  1982. segment_document.error = str(e)
  1983. db.session.commit()
  1984. return segment_data_list
  1985. @classmethod
  1986. def update_segment(cls, args: SegmentUpdateArgs, segment: DocumentSegment, document: Document, dataset: Dataset):
  1987. indexing_cache_key = "segment_{}_indexing".format(segment.id)
  1988. cache_result = redis_client.get(indexing_cache_key)
  1989. if cache_result is not None:
  1990. raise ValueError("Segment is indexing, please try again later")
  1991. if args.enabled is not None:
  1992. action = args.enabled
  1993. if segment.enabled != action:
  1994. if not action:
  1995. segment.enabled = action
  1996. segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  1997. segment.disabled_by = current_user.id
  1998. db.session.add(segment)
  1999. db.session.commit()
  2000. # Set cache to prevent indexing the same segment multiple times
  2001. redis_client.setex(indexing_cache_key, 600, 1)
  2002. disable_segment_from_index_task.delay(segment.id)
  2003. return segment
  2004. if not segment.enabled:
  2005. if args.enabled is not None:
  2006. if not args.enabled:
  2007. raise ValueError("Can't update disabled segment")
  2008. else:
  2009. raise ValueError("Can't update disabled segment")
  2010. try:
  2011. word_count_change = segment.word_count
  2012. content = args.content or segment.content
  2013. if segment.content == content:
  2014. segment.word_count = len(content)
  2015. if document.doc_form == "qa_model":
  2016. segment.answer = args.answer
  2017. segment.word_count += len(args.answer) if args.answer else 0
  2018. word_count_change = segment.word_count - word_count_change
  2019. keyword_changed = False
  2020. if args.keywords:
  2021. if Counter(segment.keywords) != Counter(args.keywords):
  2022. segment.keywords = args.keywords
  2023. keyword_changed = True
  2024. segment.enabled = True
  2025. segment.disabled_at = None
  2026. segment.disabled_by = None
  2027. db.session.add(segment)
  2028. db.session.commit()
  2029. # update document word count
  2030. if word_count_change != 0:
  2031. document.word_count = max(0, document.word_count + word_count_change)
  2032. db.session.add(document)
  2033. # update segment index task
  2034. if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
  2035. # regenerate child chunks
  2036. # get embedding model instance
  2037. if dataset.indexing_technique == "high_quality":
  2038. # check embedding model setting
  2039. model_manager = ModelManager()
  2040. if dataset.embedding_model_provider:
  2041. embedding_model_instance = model_manager.get_model_instance(
  2042. tenant_id=dataset.tenant_id,
  2043. provider=dataset.embedding_model_provider,
  2044. model_type=ModelType.TEXT_EMBEDDING,
  2045. model=dataset.embedding_model,
  2046. )
  2047. else:
  2048. embedding_model_instance = model_manager.get_default_model_instance(
  2049. tenant_id=dataset.tenant_id,
  2050. model_type=ModelType.TEXT_EMBEDDING,
  2051. )
  2052. else:
  2053. raise ValueError("The knowledge base index technique is not high quality!")
  2054. # get the process rule
  2055. processing_rule = (
  2056. db.session.query(DatasetProcessRule)
  2057. .filter(DatasetProcessRule.id == document.dataset_process_rule_id)
  2058. .first()
  2059. )
  2060. if not processing_rule:
  2061. raise ValueError("No processing rule found.")
  2062. VectorService.generate_child_chunks(
  2063. segment, document, dataset, embedding_model_instance, processing_rule, True
  2064. )
  2065. elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
  2066. if args.enabled or keyword_changed:
  2067. VectorService.create_segments_vector(
  2068. [args.keywords] if args.keywords else None,
  2069. [segment],
  2070. dataset,
  2071. document.doc_form,
  2072. )
  2073. else:
  2074. segment_hash = helper.generate_text_hash(content)
  2075. tokens = 0
  2076. if dataset.indexing_technique == "high_quality":
  2077. model_manager = ModelManager()
  2078. embedding_model = model_manager.get_model_instance(
  2079. tenant_id=current_user.current_tenant_id,
  2080. provider=dataset.embedding_model_provider,
  2081. model_type=ModelType.TEXT_EMBEDDING,
  2082. model=dataset.embedding_model,
  2083. )
  2084. # calc embedding use tokens
  2085. if document.doc_form == "qa_model":
  2086. tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment.answer])[0]
  2087. else:
  2088. tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]
  2089. segment.content = content
  2090. segment.index_node_hash = segment_hash
  2091. segment.word_count = len(content)
  2092. segment.tokens = tokens
  2093. segment.status = "completed"
  2094. segment.indexing_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  2095. segment.completed_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  2096. segment.updated_by = current_user.id
  2097. segment.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  2098. segment.enabled = True
  2099. segment.disabled_at = None
  2100. segment.disabled_by = None
  2101. if document.doc_form == "qa_model":
  2102. segment.answer = args.answer
  2103. segment.word_count += len(args.answer) if args.answer else 0
  2104. word_count_change = segment.word_count - word_count_change
  2105. # update document word count
  2106. if word_count_change != 0:
  2107. document.word_count = max(0, document.word_count + word_count_change)
  2108. db.session.add(document)
  2109. db.session.add(segment)
  2110. db.session.commit()
  2111. if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
  2112. # get embedding model instance
  2113. if dataset.indexing_technique == "high_quality":
  2114. # check embedding model setting
  2115. model_manager = ModelManager()
  2116. if dataset.embedding_model_provider:
  2117. embedding_model_instance = model_manager.get_model_instance(
  2118. tenant_id=dataset.tenant_id,
  2119. provider=dataset.embedding_model_provider,
  2120. model_type=ModelType.TEXT_EMBEDDING,
  2121. model=dataset.embedding_model,
  2122. )
  2123. else:
  2124. embedding_model_instance = model_manager.get_default_model_instance(
  2125. tenant_id=dataset.tenant_id,
  2126. model_type=ModelType.TEXT_EMBEDDING,
  2127. )
  2128. else:
  2129. raise ValueError("The knowledge base index technique is not high quality!")
  2130. # get the process rule
  2131. processing_rule = (
  2132. db.session.query(DatasetProcessRule)
  2133. .filter(DatasetProcessRule.id == document.dataset_process_rule_id)
  2134. .first()
  2135. )
  2136. if not processing_rule:
  2137. raise ValueError("No processing rule found.")
  2138. VectorService.generate_child_chunks(
  2139. segment, document, dataset, embedding_model_instance, processing_rule, True
  2140. )
  2141. elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
  2142. # update segment vector index
  2143. VectorService.update_segment_vector(args.keywords, segment, dataset)
  2144. except Exception as e:
  2145. logging.exception("update segment index failed")
  2146. segment.enabled = False
  2147. segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  2148. segment.status = "error"
  2149. segment.error = str(e)
  2150. db.session.commit()
  2151. new_segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  2152. return new_segment
  2153. @classmethod
  2154. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  2155. indexing_cache_key = "segment_{}_delete_indexing".format(segment.id)
  2156. cache_result = redis_client.get(indexing_cache_key)
  2157. if cache_result is not None:
  2158. raise ValueError("Segment is deleting.")
  2159. # enabled segment need to delete index
  2160. if segment.enabled:
  2161. # send delete segment index task
  2162. redis_client.setex(indexing_cache_key, 600, 1)
  2163. delete_segment_from_index_task.delay([segment.index_node_id], dataset.id, document.id)
  2164. db.session.delete(segment)
  2165. # update document word count
  2166. document.word_count -= segment.word_count
  2167. db.session.add(document)
  2168. db.session.commit()
  2169. @classmethod
  2170. def delete_segments(cls, segment_ids: list, document: Document, dataset: Dataset):
  2171. index_node_ids = (
  2172. DocumentSegment.query.with_entities(DocumentSegment.index_node_id)
  2173. .filter(
  2174. DocumentSegment.id.in_(segment_ids),
  2175. DocumentSegment.dataset_id == dataset.id,
  2176. DocumentSegment.document_id == document.id,
  2177. DocumentSegment.tenant_id == current_user.current_tenant_id,
  2178. )
  2179. .all()
  2180. )
  2181. index_node_ids = [index_node_id[0] for index_node_id in index_node_ids]
  2182. delete_segment_from_index_task.delay(index_node_ids, dataset.id, document.id)
  2183. db.session.query(DocumentSegment).filter(DocumentSegment.id.in_(segment_ids)).delete()
  2184. db.session.commit()
  2185. @classmethod
  2186. def update_segments_status(cls, segment_ids: list, action: str, dataset: Dataset, document: Document):
  2187. if action == "enable":
  2188. segments = (
  2189. db.session.query(DocumentSegment)
  2190. .filter(
  2191. DocumentSegment.id.in_(segment_ids),
  2192. DocumentSegment.dataset_id == dataset.id,
  2193. DocumentSegment.document_id == document.id,
  2194. DocumentSegment.enabled == False,
  2195. )
  2196. .all()
  2197. )
  2198. if not segments:
  2199. return
  2200. real_deal_segmment_ids = []
  2201. for segment in segments:
  2202. indexing_cache_key = "segment_{}_indexing".format(segment.id)
  2203. cache_result = redis_client.get(indexing_cache_key)
  2204. if cache_result is not None:
  2205. continue
  2206. segment.enabled = True
  2207. segment.disabled_at = None
  2208. segment.disabled_by = None
  2209. db.session.add(segment)
  2210. real_deal_segmment_ids.append(segment.id)
  2211. db.session.commit()
  2212. enable_segments_to_index_task.delay(real_deal_segmment_ids, dataset.id, document.id)
  2213. elif action == "disable":
  2214. segments = (
  2215. db.session.query(DocumentSegment)
  2216. .filter(
  2217. DocumentSegment.id.in_(segment_ids),
  2218. DocumentSegment.dataset_id == dataset.id,
  2219. DocumentSegment.document_id == document.id,
  2220. DocumentSegment.enabled == True,
  2221. )
  2222. .all()
  2223. )
  2224. if not segments:
  2225. return
  2226. real_deal_segmment_ids = []
  2227. for segment in segments:
  2228. indexing_cache_key = "segment_{}_indexing".format(segment.id)
  2229. cache_result = redis_client.get(indexing_cache_key)
  2230. if cache_result is not None:
  2231. continue
  2232. segment.enabled = False
  2233. segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  2234. segment.disabled_by = current_user.id
  2235. db.session.add(segment)
  2236. real_deal_segmment_ids.append(segment.id)
  2237. db.session.commit()
  2238. disable_segments_from_index_task.delay(real_deal_segmment_ids, dataset.id, document.id)
  2239. else:
  2240. raise InvalidActionError()
  2241. @classmethod
  2242. def create_child_chunk(
  2243. cls, content: str, segment: DocumentSegment, document: Document, dataset: Dataset
  2244. ) -> ChildChunk:
  2245. lock_name = "add_child_lock_{}".format(segment.id)
  2246. with redis_client.lock(lock_name, timeout=20):
  2247. index_node_id = str(uuid.uuid4())
  2248. index_node_hash = helper.generate_text_hash(content)
  2249. child_chunk_count = (
  2250. db.session.query(ChildChunk)
  2251. .filter(
  2252. ChildChunk.tenant_id == current_user.current_tenant_id,
  2253. ChildChunk.dataset_id == dataset.id,
  2254. ChildChunk.document_id == document.id,
  2255. ChildChunk.segment_id == segment.id,
  2256. )
  2257. .count()
  2258. )
  2259. max_position = (
  2260. db.session.query(func.max(ChildChunk.position))
  2261. .filter(
  2262. ChildChunk.tenant_id == current_user.current_tenant_id,
  2263. ChildChunk.dataset_id == dataset.id,
  2264. ChildChunk.document_id == document.id,
  2265. ChildChunk.segment_id == segment.id,
  2266. )
  2267. .scalar()
  2268. )
  2269. child_chunk = ChildChunk(
  2270. tenant_id=current_user.current_tenant_id,
  2271. dataset_id=dataset.id,
  2272. document_id=document.id,
  2273. segment_id=segment.id,
  2274. position=max_position + 1,
  2275. index_node_id=index_node_id,
  2276. index_node_hash=index_node_hash,
  2277. content=content,
  2278. word_count=len(content),
  2279. type="customized",
  2280. created_by=current_user.id,
  2281. )
  2282. db.session.add(child_chunk)
  2283. # save vector index
  2284. try:
  2285. VectorService.create_child_chunk_vector(child_chunk, dataset)
  2286. except Exception as e:
  2287. logging.exception("create child chunk index failed")
  2288. db.session.rollback()
  2289. raise ChildChunkIndexingError(str(e))
  2290. db.session.commit()
  2291. return child_chunk
  2292. @classmethod
  2293. def update_child_chunks(
  2294. cls,
  2295. child_chunks_update_args: list[ChildChunkUpdateArgs],
  2296. segment: DocumentSegment,
  2297. document: Document,
  2298. dataset: Dataset,
  2299. ) -> list[ChildChunk]:
  2300. child_chunks = (
  2301. db.session.query(ChildChunk)
  2302. .filter(
  2303. ChildChunk.dataset_id == dataset.id,
  2304. ChildChunk.document_id == document.id,
  2305. ChildChunk.segment_id == segment.id,
  2306. )
  2307. .all()
  2308. )
  2309. child_chunks_map = {chunk.id: chunk for chunk in child_chunks}
  2310. new_child_chunks, update_child_chunks, delete_child_chunks, new_child_chunks_args = [], [], [], []
  2311. for child_chunk_update_args in child_chunks_update_args:
  2312. if child_chunk_update_args.id:
  2313. child_chunk = child_chunks_map.pop(child_chunk_update_args.id, None)
  2314. if child_chunk:
  2315. if child_chunk.content != child_chunk_update_args.content:
  2316. child_chunk.content = child_chunk_update_args.content
  2317. child_chunk.word_count = len(child_chunk.content)
  2318. child_chunk.updated_by = current_user.id
  2319. child_chunk.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  2320. child_chunk.type = "customized"
  2321. update_child_chunks.append(child_chunk)
  2322. else:
  2323. new_child_chunks_args.append(child_chunk_update_args)
  2324. if child_chunks_map:
  2325. delete_child_chunks = list(child_chunks_map.values())
  2326. try:
  2327. if update_child_chunks:
  2328. db.session.bulk_save_objects(update_child_chunks)
  2329. if delete_child_chunks:
  2330. for child_chunk in delete_child_chunks:
  2331. db.session.delete(child_chunk)
  2332. if new_child_chunks_args:
  2333. child_chunk_count = len(child_chunks)
  2334. for position, args in enumerate(new_child_chunks_args, start=child_chunk_count + 1):
  2335. index_node_id = str(uuid.uuid4())
  2336. index_node_hash = helper.generate_text_hash(args.content)
  2337. child_chunk = ChildChunk(
  2338. tenant_id=current_user.current_tenant_id,
  2339. dataset_id=dataset.id,
  2340. document_id=document.id,
  2341. segment_id=segment.id,
  2342. position=position,
  2343. index_node_id=index_node_id,
  2344. index_node_hash=index_node_hash,
  2345. content=args.content,
  2346. word_count=len(args.content),
  2347. type="customized",
  2348. created_by=current_user.id,
  2349. )
  2350. db.session.add(child_chunk)
  2351. db.session.flush()
  2352. new_child_chunks.append(child_chunk)
  2353. VectorService.update_child_chunk_vector(new_child_chunks, update_child_chunks, delete_child_chunks, dataset)
  2354. db.session.commit()
  2355. except Exception as e:
  2356. logging.exception("update child chunk index failed")
  2357. db.session.rollback()
  2358. raise ChildChunkIndexingError(str(e))
  2359. return sorted(new_child_chunks + update_child_chunks, key=lambda x: x.position)
  2360. @classmethod
  2361. def update_child_chunk(
  2362. cls,
  2363. content: str,
  2364. child_chunk: ChildChunk,
  2365. segment: DocumentSegment,
  2366. document: Document,
  2367. dataset: Dataset,
  2368. ) -> ChildChunk:
  2369. try:
  2370. child_chunk.content = content
  2371. child_chunk.word_count = len(content)
  2372. child_chunk.updated_by = current_user.id
  2373. child_chunk.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  2374. child_chunk.type = "customized"
  2375. db.session.add(child_chunk)
  2376. VectorService.update_child_chunk_vector([], [child_chunk], [], dataset)
  2377. db.session.commit()
  2378. except Exception as e:
  2379. logging.exception("update child chunk index failed")
  2380. db.session.rollback()
  2381. raise ChildChunkIndexingError(str(e))
  2382. return child_chunk
  2383. @classmethod
  2384. def delete_child_chunk(cls, child_chunk: ChildChunk, dataset: Dataset):
  2385. db.session.delete(child_chunk)
  2386. try:
  2387. VectorService.delete_child_chunk_vector(child_chunk, dataset)
  2388. except Exception as e:
  2389. logging.exception("delete child chunk index failed")
  2390. db.session.rollback()
  2391. raise ChildChunkDeleteIndexError(str(e))
  2392. db.session.commit()
  2393. @classmethod
  2394. def get_child_chunks(
  2395. cls, segment_id: str, document_id: str, dataset_id: str, page: int, limit: int, keyword: Optional[str] = None
  2396. ):
  2397. query = ChildChunk.query.filter_by(
  2398. tenant_id=current_user.current_tenant_id,
  2399. dataset_id=dataset_id,
  2400. document_id=document_id,
  2401. segment_id=segment_id,
  2402. ).order_by(ChildChunk.position.asc())
  2403. if keyword:
  2404. query = query.where(ChildChunk.content.ilike(f"%{keyword}%"))
  2405. return query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
  2406. @classmethod
  2407. def get_child_chunk_by_id(cls, child_chunk_id: str, tenant_id: str) -> Optional[ChildChunk]:
  2408. """Get a child chunk by its ID."""
  2409. result = ChildChunk.query.filter(ChildChunk.id == child_chunk_id, ChildChunk.tenant_id == tenant_id).first()
  2410. return result if isinstance(result, ChildChunk) else None
  2411. @classmethod
  2412. def get_segments(
  2413. cls, document_id: str, tenant_id: str, status_list: list[str] | None = None, keyword: str | None = None
  2414. ):
  2415. """Get segments for a document with optional filtering."""
  2416. query = DocumentSegment.query.filter(
  2417. DocumentSegment.document_id == document_id, DocumentSegment.tenant_id == tenant_id
  2418. )
  2419. if status_list:
  2420. query = query.filter(DocumentSegment.status.in_(status_list))
  2421. if keyword:
  2422. query = query.filter(DocumentSegment.content.ilike(f"%{keyword}%"))
  2423. segments = query.order_by(DocumentSegment.position.asc()).all()
  2424. total = len(segments)
  2425. return segments, total
  2426. @classmethod
  2427. def update_segment_by_id(
  2428. cls, tenant_id: str, dataset_id: str, document_id: str, segment_id: str, segment_data: dict, user_id: str
  2429. ) -> tuple[DocumentSegment, Document]:
  2430. """Update a segment by its ID with validation and checks."""
  2431. # check dataset
  2432. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  2433. if not dataset:
  2434. raise NotFound("Dataset not found.")
  2435. # check user's model setting
  2436. DatasetService.check_dataset_model_setting(dataset)
  2437. # check document
  2438. document = DocumentService.get_document(dataset_id, document_id)
  2439. if not document:
  2440. raise NotFound("Document not found.")
  2441. # check embedding model setting if high quality
  2442. if dataset.indexing_technique == "high_quality":
  2443. try:
  2444. model_manager = ModelManager()
  2445. model_manager.get_model_instance(
  2446. tenant_id=user_id,
  2447. provider=dataset.embedding_model_provider,
  2448. model_type=ModelType.TEXT_EMBEDDING,
  2449. model=dataset.embedding_model,
  2450. )
  2451. except LLMBadRequestError:
  2452. raise ValueError(
  2453. "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
  2454. )
  2455. except ProviderTokenNotInitError as ex:
  2456. raise ValueError(ex.description)
  2457. # check segment
  2458. segment = DocumentSegment.query.filter(
  2459. DocumentSegment.id == segment_id, DocumentSegment.tenant_id == user_id
  2460. ).first()
  2461. if not segment:
  2462. raise NotFound("Segment not found.")
  2463. # validate and update segment
  2464. cls.segment_create_args_validate(segment_data, document)
  2465. updated_segment = cls.update_segment(SegmentUpdateArgs(**segment_data), segment, document, dataset)
  2466. return updated_segment, document
  2467. @classmethod
  2468. def get_segment_by_id(cls, segment_id: str, tenant_id: str) -> Optional[DocumentSegment]:
  2469. """Get a segment by its ID."""
  2470. result = DocumentSegment.query.filter(
  2471. DocumentSegment.id == segment_id, DocumentSegment.tenant_id == tenant_id
  2472. ).first()
  2473. return result if isinstance(result, DocumentSegment) else None
  2474. class DatasetCollectionBindingService:
  2475. @classmethod
  2476. def get_dataset_collection_binding(
  2477. cls, provider_name: str, model_name: str, collection_type: str = "dataset"
  2478. ) -> DatasetCollectionBinding:
  2479. dataset_collection_binding = (
  2480. db.session.query(DatasetCollectionBinding)
  2481. .filter(
  2482. DatasetCollectionBinding.provider_name == provider_name,
  2483. DatasetCollectionBinding.model_name == model_name,
  2484. DatasetCollectionBinding.type == collection_type,
  2485. )
  2486. .order_by(DatasetCollectionBinding.created_at)
  2487. .first()
  2488. )
  2489. if not dataset_collection_binding:
  2490. dataset_collection_binding = DatasetCollectionBinding(
  2491. provider_name=provider_name,
  2492. model_name=model_name,
  2493. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  2494. type=collection_type,
  2495. )
  2496. db.session.add(dataset_collection_binding)
  2497. db.session.commit()
  2498. return dataset_collection_binding
  2499. @classmethod
  2500. def get_dataset_collection_binding_by_id_and_type(
  2501. cls, collection_binding_id: str, collection_type: str = "dataset"
  2502. ) -> DatasetCollectionBinding:
  2503. dataset_collection_binding = (
  2504. db.session.query(DatasetCollectionBinding)
  2505. .filter(
  2506. DatasetCollectionBinding.id == collection_binding_id, DatasetCollectionBinding.type == collection_type
  2507. )
  2508. .order_by(DatasetCollectionBinding.created_at)
  2509. .first()
  2510. )
  2511. if not dataset_collection_binding:
  2512. raise ValueError("Dataset collection binding not found")
  2513. return dataset_collection_binding
  2514. class DatasetPermissionService:
  2515. @classmethod
  2516. def get_dataset_edit_user_ids(cls, dataset_id):
  2517. edit_user_ids_query = (
  2518. db.session.query(
  2519. DatasetPermissionAll.account_id,
  2520. )
  2521. .filter(DatasetPermissionAll.dataset_id == dataset_id, DatasetPermissionAll.has_edit_permission == True)
  2522. .all()
  2523. )
  2524. edit_user_ids = []
  2525. for edit_user_id in edit_user_ids_query:
  2526. edit_user_ids.append(edit_user_id.account_id)
  2527. return edit_user_ids
  2528. @classmethod
  2529. def get_dataset_partial_member_list(cls, dataset_id):
  2530. user_list_query = (
  2531. db.session.query(
  2532. DatasetPermission.account_id,
  2533. )
  2534. .filter(DatasetPermission.dataset_id == dataset_id)
  2535. .all()
  2536. )
  2537. user_list = []
  2538. for user in user_list_query:
  2539. user_list.append(user.account_id)
  2540. return user_list
  2541. @classmethod
  2542. def update_partial_member_list(cls, tenant_id, dataset_id, user_list):
  2543. try:
  2544. db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
  2545. permissions = []
  2546. for user in user_list:
  2547. permission = DatasetPermission(
  2548. tenant_id=tenant_id,
  2549. dataset_id=dataset_id,
  2550. account_id=user["user_id"],
  2551. )
  2552. permissions.append(permission)
  2553. db.session.add_all(permissions)
  2554. db.session.commit()
  2555. except Exception as e:
  2556. db.session.rollback()
  2557. raise e
  2558. @classmethod
  2559. def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):
  2560. if not user.is_dataset_editor:
  2561. raise NoPermissionError("User does not have permission to edit this dataset.")
  2562. if user.is_dataset_operator and dataset.permission != requested_permission:
  2563. raise NoPermissionError("Dataset operators cannot change the dataset permissions.")
  2564. if user.is_dataset_operator and requested_permission == "partial_members":
  2565. if not requested_partial_member_list:
  2566. raise ValueError("Partial member list is required when setting to partial members.")
  2567. local_member_list = cls.get_dataset_partial_member_list(dataset.id)
  2568. request_member_list = [user["user_id"] for user in requested_partial_member_list]
  2569. if set(local_member_list) != set(request_member_list):
  2570. raise ValueError("Dataset operators cannot change the dataset permissions.")
  2571. @classmethod
  2572. def clear_partial_member_list(cls, dataset_id):
  2573. try:
  2574. db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
  2575. db.session.commit()
  2576. except Exception as e:
  2577. db.session.rollback()
  2578. raise e
  2579. @staticmethod
  2580. def save_template_with_dataset_id(
  2581. dataset: Dataset,
  2582. knowledge_config: KnowledgeConfig,
  2583. account: Account | Any,
  2584. dataset_process_rule: Optional[DatasetProcessRule] = None,
  2585. created_from: str = "web",
  2586. ):
  2587. return 1