| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304 | import osfrom collections.abc import Generatorimport pytestfrom core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDeltafrom core.model_runtime.entities.message_entities import AssistantPromptMessage, UserPromptMessagefrom core.model_runtime.errors.validate import CredentialsValidateFailedErrorfrom core.model_runtime.model_providers.huggingface_hub.llm.llm import HuggingfaceHubLargeLanguageModelfrom tests.integration_tests.model_runtime.__mock.huggingface import setup_huggingface_mock@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)def test_hosted_inference_api_validate_credentials(setup_huggingface_mock):    model = HuggingfaceHubLargeLanguageModel()    with pytest.raises(CredentialsValidateFailedError):        model.validate_credentials(            model='HuggingFaceH4/zephyr-7b-beta',            credentials={                'huggingfacehub_api_type': 'hosted_inference_api',                'huggingfacehub_api_token': 'invalid_key'            }        )    with pytest.raises(CredentialsValidateFailedError):        model.validate_credentials(            model='fake-model',            credentials={                'huggingfacehub_api_type': 'hosted_inference_api',                'huggingfacehub_api_token': 'invalid_key'            }        )    model.validate_credentials(        model='HuggingFaceH4/zephyr-7b-beta',        credentials={            'huggingfacehub_api_type': 'hosted_inference_api',            'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY')        }    )@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)def test_hosted_inference_api_invoke_model(setup_huggingface_mock):    model = HuggingfaceHubLargeLanguageModel()    response = model.invoke(        model='HuggingFaceH4/zephyr-7b-beta',        credentials={            'huggingfacehub_api_type': 'hosted_inference_api',            'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY')        },        prompt_messages=[            UserPromptMessage(                content='Who are you?'            )        ],        model_parameters={            'temperature': 1.0,            'top_k': 2,            'top_p': 0.5,        },        stop=['How'],        stream=False,        user="abc-123"    )    assert isinstance(response, LLMResult)    assert len(response.message.content) > 0@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)def test_hosted_inference_api_invoke_stream_model(setup_huggingface_mock):    model = HuggingfaceHubLargeLanguageModel()    response = model.invoke(        model='HuggingFaceH4/zephyr-7b-beta',        credentials={            'huggingfacehub_api_type': 'hosted_inference_api',            'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY')        },        prompt_messages=[            UserPromptMessage(                content='Who are you?'            )        ],        model_parameters={            'temperature': 1.0,            'top_k': 2,            'top_p': 0.5,        },        stop=['How'],        stream=True,        user="abc-123"    )    assert isinstance(response, Generator)    for chunk in response:        assert isinstance(chunk, LLMResultChunk)        assert isinstance(chunk.delta, LLMResultChunkDelta)        assert isinstance(chunk.delta.message, AssistantPromptMessage)        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)def test_inference_endpoints_text_generation_validate_credentials(setup_huggingface_mock):    model = HuggingfaceHubLargeLanguageModel()    with pytest.raises(CredentialsValidateFailedError):        model.validate_credentials(            model='openchat/openchat_3.5',            credentials={                'huggingfacehub_api_type': 'inference_endpoints',                'huggingfacehub_api_token': 'invalid_key',                'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT_GEN_ENDPOINT_URL'),                'task_type': 'text-generation'            }        )    model.validate_credentials(        model='openchat/openchat_3.5',        credentials={            'huggingfacehub_api_type': 'inference_endpoints',            'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),            'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT_GEN_ENDPOINT_URL'),            'task_type': 'text-generation'        }    )@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)def test_inference_endpoints_text_generation_invoke_model(setup_huggingface_mock):    model = HuggingfaceHubLargeLanguageModel()    response = model.invoke(        model='openchat/openchat_3.5',        credentials={            'huggingfacehub_api_type': 'inference_endpoints',            'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),            'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT_GEN_ENDPOINT_URL'),            'task_type': 'text-generation'        },        prompt_messages=[            UserPromptMessage(                content='Who are you?'            )        ],        model_parameters={            'temperature': 1.0,            'top_k': 2,            'top_p': 0.5,        },        stop=['How'],        stream=False,        user="abc-123"    )    assert isinstance(response, LLMResult)    assert len(response.message.content) > 0@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)def test_inference_endpoints_text_generation_invoke_stream_model(setup_huggingface_mock):    model = HuggingfaceHubLargeLanguageModel()    response = model.invoke(        model='openchat/openchat_3.5',        credentials={            'huggingfacehub_api_type': 'inference_endpoints',            'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),            'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT_GEN_ENDPOINT_URL'),            'task_type': 'text-generation'        },        prompt_messages=[            UserPromptMessage(                content='Who are you?'            )        ],        model_parameters={            'temperature': 1.0,            'top_k': 2,            'top_p': 0.5,        },        stop=['How'],        stream=True,        user="abc-123"    )    assert isinstance(response, Generator)    for chunk in response:        assert isinstance(chunk, LLMResultChunk)        assert isinstance(chunk.delta, LLMResultChunkDelta)        assert isinstance(chunk.delta.message, AssistantPromptMessage)        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)def test_inference_endpoints_text2text_generation_validate_credentials(setup_huggingface_mock):    model = HuggingfaceHubLargeLanguageModel()    with pytest.raises(CredentialsValidateFailedError):        model.validate_credentials(            model='google/mt5-base',            credentials={                'huggingfacehub_api_type': 'inference_endpoints',                'huggingfacehub_api_token': 'invalid_key',                'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL'),                'task_type': 'text2text-generation'            }        )    model.validate_credentials(        model='google/mt5-base',        credentials={            'huggingfacehub_api_type': 'inference_endpoints',            'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),            'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL'),            'task_type': 'text2text-generation'        }    )@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)def test_inference_endpoints_text2text_generation_invoke_model(setup_huggingface_mock):    model = HuggingfaceHubLargeLanguageModel()    response = model.invoke(        model='google/mt5-base',        credentials={            'huggingfacehub_api_type': 'inference_endpoints',            'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),            'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL'),            'task_type': 'text2text-generation'        },        prompt_messages=[            UserPromptMessage(                content='Who are you?'            )        ],        model_parameters={            'temperature': 1.0,            'top_k': 2,            'top_p': 0.5,        },        stop=['How'],        stream=False,        user="abc-123"    )    assert isinstance(response, LLMResult)    assert len(response.message.content) > 0@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)def test_inference_endpoints_text2text_generation_invoke_stream_model(setup_huggingface_mock):    model = HuggingfaceHubLargeLanguageModel()    response = model.invoke(        model='google/mt5-base',        credentials={            'huggingfacehub_api_type': 'inference_endpoints',            'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),            'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL'),            'task_type': 'text2text-generation'        },        prompt_messages=[            UserPromptMessage(                content='Who are you?'            )        ],        model_parameters={            'temperature': 1.0,            'top_k': 2,            'top_p': 0.5,        },        stop=['How'],        stream=True,        user="abc-123"    )    assert isinstance(response, Generator)    for chunk in response:        assert isinstance(chunk, LLMResultChunk)        assert isinstance(chunk.delta, LLMResultChunkDelta)        assert isinstance(chunk.delta.message, AssistantPromptMessage)        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else Truedef test_get_num_tokens():    model = HuggingfaceHubLargeLanguageModel()    num_tokens = model.get_num_tokens(        model='google/mt5-base',        credentials={            'huggingfacehub_api_type': 'inference_endpoints',            'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),            'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL'),            'task_type': 'text2text-generation'        },        prompt_messages=[            UserPromptMessage(                content='Hello World!'            )        ]    )    assert num_tokens == 7
 |