retrieval_service.py 3.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889
  1. from typing import Optional
  2. from flask import current_app, Flask
  3. from langchain.embeddings.base import Embeddings
  4. from core.index.vector_index.vector_index import VectorIndex
  5. from core.model_providers.model_factory import ModelFactory
  6. from models.dataset import Dataset
  7. default_retrieval_model = {
  8. 'search_method': 'semantic_search',
  9. 'reranking_enable': False,
  10. 'reranking_model': {
  11. 'reranking_provider_name': '',
  12. 'reranking_model_name': ''
  13. },
  14. 'top_k': 2,
  15. 'score_threshold_enable': False
  16. }
  17. class RetrievalService:
  18. @classmethod
  19. def embedding_search(cls, flask_app: Flask, dataset: Dataset, query: str,
  20. top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
  21. all_documents: list, search_method: str, embeddings: Embeddings):
  22. with flask_app.app_context():
  23. vector_index = VectorIndex(
  24. dataset=dataset,
  25. config=current_app.config,
  26. embeddings=embeddings
  27. )
  28. documents = vector_index.search(
  29. query,
  30. search_type='similarity_score_threshold',
  31. search_kwargs={
  32. 'k': top_k,
  33. 'score_threshold': score_threshold,
  34. 'filter': {
  35. 'group_id': [dataset.id]
  36. }
  37. }
  38. )
  39. if documents:
  40. if reranking_model and search_method == 'semantic_search':
  41. rerank = ModelFactory.get_reranking_model(
  42. tenant_id=dataset.tenant_id,
  43. model_provider_name=reranking_model['reranking_provider_name'],
  44. model_name=reranking_model['reranking_model_name']
  45. )
  46. all_documents.extend(rerank.rerank(query, documents, score_threshold, len(documents)))
  47. else:
  48. all_documents.extend(documents)
  49. @classmethod
  50. def full_text_index_search(cls, flask_app: Flask, dataset: Dataset, query: str,
  51. top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
  52. all_documents: list, search_method: str, embeddings: Embeddings):
  53. with flask_app.app_context():
  54. vector_index = VectorIndex(
  55. dataset=dataset,
  56. config=current_app.config,
  57. embeddings=embeddings
  58. )
  59. documents = vector_index.search_by_full_text_index(
  60. query,
  61. search_type='similarity_score_threshold',
  62. top_k=top_k
  63. )
  64. if documents:
  65. if reranking_model and search_method == 'full_text_search':
  66. rerank = ModelFactory.get_reranking_model(
  67. tenant_id=dataset.tenant_id,
  68. model_provider_name=reranking_model['reranking_provider_name'],
  69. model_name=reranking_model['reranking_model_name']
  70. )
  71. all_documents.extend(rerank.rerank(query, documents, score_threshold, len(documents)))
  72. else:
  73. all_documents.extend(documents)