Matri 49ef9ef225 feat(tool): getimg.ai integration (#6260) 1 vuosi sitten
..
configs 2ba05b041f refactor(myscale):Set the default value of the myscale vector db in DifyConfig. (#6441) 1 vuosi sitten
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) 1 vuosi sitten
controllers afe95fa780 feat: support get workflow task execution status (#6411) 1 vuosi sitten
core 49ef9ef225 feat(tool): getimg.ai integration (#6260) 1 vuosi sitten
docker 5236cb1888 fix: kill signal is not passed to the main process (#6159) 1 vuosi sitten
events d320d1468d Feat/delete file when clean document (#5882) 1 vuosi sitten
extensions 7c397f5722 update celery beat scheduler time to env (#6352) 1 vuosi sitten
fields 9622fbb62f feat: app rate limit (#5844) 1 vuosi sitten
libs 9622fbb62f feat: app rate limit (#5844) 1 vuosi sitten
migrations 9622fbb62f feat: app rate limit (#5844) 1 vuosi sitten
models 8a80af39c9 refactor(models&tools): switch to dify_config in models and tools. (#6394) 1 vuosi sitten
schedule e493ce9981 update clean embedding cache logic (#6434) 1 vuosi sitten
services 57729823a0 fix wrong method using (#6459) 1 vuosi sitten
tasks 443e96777b update empty document caused delete exist collection (#6392) 1 vuosi sitten
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 1 vuosi sitten
tests 4a026fa352 Enhancement: add model provider - Amazon Sagemaker (#6255) 1 vuosi sitten
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 vuosi sitten
.env.example 7c397f5722 update celery beat scheduler time to env (#6352) 1 vuosi sitten
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) 1 vuosi sitten
README.md 2d6624cf9e typo: Update README.md (#5987) 1 vuosi sitten
app.py d7f75d17cc Chore/remove-unused-code (#5917) 1 vuosi sitten
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) 1 vuosi sitten
poetry.lock 4e2fba404d WebscraperTool bypass cloudflare site by cloudscraper (#6337) 1 vuosi sitten
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 1 vuosi sitten
pyproject.toml 4e2fba404d WebscraperTool bypass cloudflare site by cloudscraper (#6337) 1 vuosi sitten

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

```bash for Linux sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env


   ```bash for Mac
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh