Jyong 57729823a0 fix wrong method using (#6459) vor 10 Monaten
..
configs 2ba05b041f refactor(myscale):Set the default value of the myscale vector db in DifyConfig. (#6441) vor 10 Monaten
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) vor 10 Monaten
controllers afe95fa780 feat: support get workflow task execution status (#6411) vor 10 Monaten
core 9e168f9d1c feat: support gpt-4o-mini for openrouter provider (#6447) vor 10 Monaten
docker 5236cb1888 fix: kill signal is not passed to the main process (#6159) vor 10 Monaten
events d320d1468d Feat/delete file when clean document (#5882) vor 10 Monaten
extensions 7c397f5722 update celery beat scheduler time to env (#6352) vor 10 Monaten
fields 9622fbb62f feat: app rate limit (#5844) vor 10 Monaten
libs 9622fbb62f feat: app rate limit (#5844) vor 10 Monaten
migrations 9622fbb62f feat: app rate limit (#5844) vor 10 Monaten
models 8a80af39c9 refactor(models&tools): switch to dify_config in models and tools. (#6394) vor 10 Monaten
schedule e493ce9981 update clean embedding cache logic (#6434) vor 10 Monaten
services 57729823a0 fix wrong method using (#6459) vor 10 Monaten
tasks 443e96777b update empty document caused delete exist collection (#6392) vor 10 Monaten
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) vor 10 Monaten
tests 4a026fa352 Enhancement: add model provider - Amazon Sagemaker (#6255) vor 10 Monaten
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) vor 11 Monaten
.env.example 7c397f5722 update celery beat scheduler time to env (#6352) vor 10 Monaten
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) vor 10 Monaten
README.md 2d6624cf9e typo: Update README.md (#5987) vor 10 Monaten
app.py d7f75d17cc Chore/remove-unused-code (#5917) vor 10 Monaten
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) vor 10 Monaten
poetry.lock 4e2fba404d WebscraperTool bypass cloudflare site by cloudscraper (#6337) vor 10 Monaten
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) vor 11 Monaten
pyproject.toml 4e2fba404d WebscraperTool bypass cloudflare site by cloudscraper (#6337) vor 10 Monaten

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

```bash for Linux sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env


   ```bash for Mac
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh