message_service.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292
  1. import json
  2. from typing import Optional, Union
  3. from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfigManager
  4. from core.app.entities.app_invoke_entities import InvokeFrom
  5. from core.llm_generator.llm_generator import LLMGenerator
  6. from core.memory.token_buffer_memory import TokenBufferMemory
  7. from core.model_manager import ModelManager
  8. from core.model_runtime.entities.model_entities import ModelType
  9. from core.ops.entities.trace_entity import TraceTaskName
  10. from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
  11. from core.ops.utils import measure_time
  12. from extensions.ext_database import db
  13. from libs.infinite_scroll_pagination import InfiniteScrollPagination
  14. from models.account import Account
  15. from models.model import App, AppMode, AppModelConfig, EndUser, Message, MessageFeedback
  16. from services.conversation_service import ConversationService
  17. from services.errors.conversation import ConversationCompletedError, ConversationNotExistsError
  18. from services.errors.message import (
  19. FirstMessageNotExistsError,
  20. LastMessageNotExistsError,
  21. MessageNotExistsError,
  22. SuggestedQuestionsAfterAnswerDisabledError,
  23. )
  24. from services.workflow_service import WorkflowService
  25. class MessageService:
  26. @classmethod
  27. def pagination_by_first_id(
  28. cls,
  29. app_model: App,
  30. user: Optional[Union[Account, EndUser]],
  31. conversation_id: str,
  32. first_id: Optional[str],
  33. limit: int,
  34. ) -> InfiniteScrollPagination:
  35. if not user:
  36. return InfiniteScrollPagination(data=[], limit=limit, has_more=False)
  37. if not conversation_id:
  38. return InfiniteScrollPagination(data=[], limit=limit, has_more=False)
  39. conversation = ConversationService.get_conversation(
  40. app_model=app_model, user=user, conversation_id=conversation_id
  41. )
  42. if first_id:
  43. first_message = (
  44. db.session.query(Message)
  45. .filter(Message.conversation_id == conversation.id, Message.id == first_id)
  46. .first()
  47. )
  48. if not first_message:
  49. raise FirstMessageNotExistsError()
  50. history_messages = (
  51. db.session.query(Message)
  52. .filter(
  53. Message.conversation_id == conversation.id,
  54. Message.created_at < first_message.created_at,
  55. Message.id != first_message.id,
  56. )
  57. .order_by(Message.created_at.desc())
  58. .limit(limit)
  59. .all()
  60. )
  61. else:
  62. history_messages = (
  63. db.session.query(Message)
  64. .filter(Message.conversation_id == conversation.id)
  65. .order_by(Message.created_at.desc())
  66. .limit(limit)
  67. .all()
  68. )
  69. has_more = False
  70. if len(history_messages) == limit:
  71. current_page_first_message = history_messages[-1]
  72. rest_count = (
  73. db.session.query(Message)
  74. .filter(
  75. Message.conversation_id == conversation.id,
  76. Message.created_at < current_page_first_message.created_at,
  77. Message.id != current_page_first_message.id,
  78. )
  79. .count()
  80. )
  81. if rest_count > 0:
  82. has_more = True
  83. history_messages = list(reversed(history_messages))
  84. return InfiniteScrollPagination(data=history_messages, limit=limit, has_more=has_more)
  85. @classmethod
  86. def pagination_by_last_id(
  87. cls,
  88. app_model: App,
  89. user: Optional[Union[Account, EndUser]],
  90. last_id: Optional[str],
  91. limit: int,
  92. conversation_id: Optional[str] = None,
  93. include_ids: Optional[list] = None,
  94. ) -> InfiniteScrollPagination:
  95. if not user:
  96. return InfiniteScrollPagination(data=[], limit=limit, has_more=False)
  97. base_query = db.session.query(Message)
  98. if conversation_id is not None:
  99. conversation = ConversationService.get_conversation(
  100. app_model=app_model, user=user, conversation_id=conversation_id
  101. )
  102. base_query = base_query.filter(Message.conversation_id == conversation.id)
  103. if include_ids is not None:
  104. base_query = base_query.filter(Message.id.in_(include_ids))
  105. if last_id:
  106. last_message = base_query.filter(Message.id == last_id).first()
  107. if not last_message:
  108. raise LastMessageNotExistsError()
  109. history_messages = (
  110. base_query.filter(Message.created_at < last_message.created_at, Message.id != last_message.id)
  111. .order_by(Message.created_at.desc())
  112. .limit(limit)
  113. .all()
  114. )
  115. else:
  116. history_messages = base_query.order_by(Message.created_at.desc()).limit(limit).all()
  117. has_more = False
  118. if len(history_messages) == limit:
  119. current_page_first_message = history_messages[-1]
  120. rest_count = base_query.filter(
  121. Message.created_at < current_page_first_message.created_at, Message.id != current_page_first_message.id
  122. ).count()
  123. if rest_count > 0:
  124. has_more = True
  125. return InfiniteScrollPagination(data=history_messages, limit=limit, has_more=has_more)
  126. @classmethod
  127. def create_feedback(
  128. cls, app_model: App, message_id: str, user: Optional[Union[Account, EndUser]], rating: Optional[str]
  129. ) -> MessageFeedback:
  130. if not user:
  131. raise ValueError("user cannot be None")
  132. message = cls.get_message(app_model=app_model, user=user, message_id=message_id)
  133. feedback = message.user_feedback if isinstance(user, EndUser) else message.admin_feedback
  134. if not rating and feedback:
  135. db.session.delete(feedback)
  136. elif rating and feedback:
  137. feedback.rating = rating
  138. elif not rating and not feedback:
  139. raise ValueError("rating cannot be None when feedback not exists")
  140. else:
  141. feedback = MessageFeedback(
  142. app_id=app_model.id,
  143. conversation_id=message.conversation_id,
  144. message_id=message.id,
  145. rating=rating,
  146. from_source=("user" if isinstance(user, EndUser) else "admin"),
  147. from_end_user_id=(user.id if isinstance(user, EndUser) else None),
  148. from_account_id=(user.id if isinstance(user, Account) else None),
  149. )
  150. db.session.add(feedback)
  151. db.session.commit()
  152. return feedback
  153. @classmethod
  154. def get_message(cls, app_model: App, user: Optional[Union[Account, EndUser]], message_id: str):
  155. message = (
  156. db.session.query(Message)
  157. .filter(
  158. Message.id == message_id,
  159. Message.app_id == app_model.id,
  160. Message.from_source == ("api" if isinstance(user, EndUser) else "console"),
  161. Message.from_end_user_id == (user.id if isinstance(user, EndUser) else None),
  162. Message.from_account_id == (user.id if isinstance(user, Account) else None),
  163. )
  164. .first()
  165. )
  166. if not message:
  167. raise MessageNotExistsError()
  168. return message
  169. @classmethod
  170. def get_suggested_questions_after_answer(
  171. cls, app_model: App, user: Optional[Union[Account, EndUser]], message_id: str, invoke_from: InvokeFrom
  172. ) -> list[Message]:
  173. if not user:
  174. raise ValueError("user cannot be None")
  175. message = cls.get_message(app_model=app_model, user=user, message_id=message_id)
  176. conversation = ConversationService.get_conversation(
  177. app_model=app_model, conversation_id=message.conversation_id, user=user
  178. )
  179. if not conversation:
  180. raise ConversationNotExistsError()
  181. if conversation.status != "normal":
  182. raise ConversationCompletedError()
  183. model_manager = ModelManager()
  184. if app_model.mode == AppMode.ADVANCED_CHAT.value:
  185. workflow_service = WorkflowService()
  186. if invoke_from == InvokeFrom.DEBUGGER:
  187. workflow = workflow_service.get_draft_workflow(app_model=app_model)
  188. else:
  189. workflow = workflow_service.get_published_workflow(app_model=app_model)
  190. if workflow is None:
  191. return []
  192. app_config = AdvancedChatAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
  193. if not app_config.additional_features.suggested_questions_after_answer:
  194. raise SuggestedQuestionsAfterAnswerDisabledError()
  195. model_instance = model_manager.get_default_model_instance(
  196. tenant_id=app_model.tenant_id, model_type=ModelType.LLM
  197. )
  198. else:
  199. if not conversation.override_model_configs:
  200. app_model_config = (
  201. db.session.query(AppModelConfig)
  202. .filter(
  203. AppModelConfig.id == conversation.app_model_config_id, AppModelConfig.app_id == app_model.id
  204. )
  205. .first()
  206. )
  207. else:
  208. conversation_override_model_configs = json.loads(conversation.override_model_configs)
  209. app_model_config = AppModelConfig(
  210. id=conversation.app_model_config_id,
  211. app_id=app_model.id,
  212. )
  213. app_model_config = app_model_config.from_model_config_dict(conversation_override_model_configs)
  214. suggested_questions_after_answer = app_model_config.suggested_questions_after_answer_dict
  215. if suggested_questions_after_answer.get("enabled", False) is False:
  216. raise SuggestedQuestionsAfterAnswerDisabledError()
  217. model_instance = model_manager.get_model_instance(
  218. tenant_id=app_model.tenant_id,
  219. provider=app_model_config.model_dict["provider"],
  220. model_type=ModelType.LLM,
  221. model=app_model_config.model_dict["name"],
  222. )
  223. # get memory of conversation (read-only)
  224. memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
  225. histories = memory.get_history_prompt_text(
  226. max_token_limit=3000,
  227. message_limit=3,
  228. )
  229. with measure_time() as timer:
  230. questions = LLMGenerator.generate_suggested_questions_after_answer(
  231. tenant_id=app_model.tenant_id, histories=histories
  232. )
  233. # get tracing instance
  234. trace_manager = TraceQueueManager(app_id=app_model.id)
  235. trace_manager.add_trace_task(
  236. TraceTask(
  237. TraceTaskName.SUGGESTED_QUESTION_TRACE, message_id=message_id, suggested_question=questions, timer=timer
  238. )
  239. )
  240. return questions