dataset_service.py 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666
  1. import datetime
  2. import json
  3. import logging
  4. import random
  5. import time
  6. import uuid
  7. from typing import Optional
  8. from flask_login import current_user
  9. from sqlalchemy import func
  10. from configs import dify_config
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_manager import ModelManager
  13. from core.model_runtime.entities.model_entities import ModelType
  14. from core.rag.datasource.keyword.keyword_factory import Keyword
  15. from core.rag.models.document import Document as RAGDocument
  16. from core.rag.retrieval.retrival_methods import RetrievalMethod
  17. from events.dataset_event import dataset_was_deleted
  18. from events.document_event import document_was_deleted
  19. from extensions.ext_database import db
  20. from extensions.ext_redis import redis_client
  21. from libs import helper
  22. from models.account import Account, TenantAccountRole
  23. from models.dataset import (
  24. AppDatasetJoin,
  25. Dataset,
  26. DatasetCollectionBinding,
  27. DatasetPermission,
  28. DatasetPermissionEnum,
  29. DatasetProcessRule,
  30. DatasetQuery,
  31. Document,
  32. DocumentSegment,
  33. )
  34. from models.model import UploadFile
  35. from models.source import DataSourceOauthBinding
  36. from services.errors.account import NoPermissionError
  37. from services.errors.dataset import DatasetNameDuplicateError
  38. from services.errors.document import DocumentIndexingError
  39. from services.errors.file import FileNotExistsError
  40. from services.feature_service import FeatureModel, FeatureService
  41. from services.tag_service import TagService
  42. from services.vector_service import VectorService
  43. from tasks.clean_notion_document_task import clean_notion_document_task
  44. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  45. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  46. from tasks.disable_segment_from_index_task import disable_segment_from_index_task
  47. from tasks.document_indexing_task import document_indexing_task
  48. from tasks.document_indexing_update_task import document_indexing_update_task
  49. from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
  50. from tasks.recover_document_indexing_task import recover_document_indexing_task
  51. from tasks.retry_document_indexing_task import retry_document_indexing_task
  52. from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
  53. class DatasetService:
  54. @staticmethod
  55. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
  56. query = Dataset.query.filter(Dataset.provider == provider, Dataset.tenant_id == tenant_id).order_by(
  57. Dataset.created_at.desc()
  58. )
  59. if user:
  60. # get permitted dataset ids
  61. dataset_permission = DatasetPermission.query.filter_by(account_id=user.id, tenant_id=tenant_id).all()
  62. permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None
  63. if user.current_role == TenantAccountRole.DATASET_OPERATOR:
  64. # only show datasets that the user has permission to access
  65. if permitted_dataset_ids:
  66. query = query.filter(Dataset.id.in_(permitted_dataset_ids))
  67. else:
  68. return [], 0
  69. else:
  70. # show all datasets that the user has permission to access
  71. if permitted_dataset_ids:
  72. query = query.filter(
  73. db.or_(
  74. Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
  75. db.and_(Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id),
  76. db.and_(
  77. Dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM,
  78. Dataset.id.in_(permitted_dataset_ids),
  79. ),
  80. )
  81. )
  82. else:
  83. query = query.filter(
  84. db.or_(
  85. Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
  86. db.and_(Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id),
  87. )
  88. )
  89. else:
  90. # if no user, only show datasets that are shared with all team members
  91. query = query.filter(Dataset.permission == DatasetPermissionEnum.ALL_TEAM)
  92. if search:
  93. query = query.filter(Dataset.name.ilike(f"%{search}%"))
  94. if tag_ids:
  95. target_ids = TagService.get_target_ids_by_tag_ids("knowledge", tenant_id, tag_ids)
  96. if target_ids:
  97. query = query.filter(Dataset.id.in_(target_ids))
  98. else:
  99. return [], 0
  100. datasets = query.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
  101. return datasets.items, datasets.total
  102. @staticmethod
  103. def get_process_rules(dataset_id):
  104. # get the latest process rule
  105. dataset_process_rule = (
  106. db.session.query(DatasetProcessRule)
  107. .filter(DatasetProcessRule.dataset_id == dataset_id)
  108. .order_by(DatasetProcessRule.created_at.desc())
  109. .limit(1)
  110. .one_or_none()
  111. )
  112. if dataset_process_rule:
  113. mode = dataset_process_rule.mode
  114. rules = dataset_process_rule.rules_dict
  115. else:
  116. mode = DocumentService.DEFAULT_RULES["mode"]
  117. rules = DocumentService.DEFAULT_RULES["rules"]
  118. return {"mode": mode, "rules": rules}
  119. @staticmethod
  120. def get_datasets_by_ids(ids, tenant_id):
  121. datasets = Dataset.query.filter(Dataset.id.in_(ids), Dataset.tenant_id == tenant_id).paginate(
  122. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False
  123. )
  124. return datasets.items, datasets.total
  125. @staticmethod
  126. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  127. # check if dataset name already exists
  128. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  129. raise DatasetNameDuplicateError(f"Dataset with name {name} already exists.")
  130. embedding_model = None
  131. if indexing_technique == "high_quality":
  132. model_manager = ModelManager()
  133. embedding_model = model_manager.get_default_model_instance(
  134. tenant_id=tenant_id, model_type=ModelType.TEXT_EMBEDDING
  135. )
  136. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  137. # dataset = Dataset(name=name, provider=provider, config=config)
  138. dataset.created_by = account.id
  139. dataset.updated_by = account.id
  140. dataset.tenant_id = tenant_id
  141. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  142. dataset.embedding_model = embedding_model.model if embedding_model else None
  143. db.session.add(dataset)
  144. db.session.commit()
  145. return dataset
  146. @staticmethod
  147. def get_dataset(dataset_id):
  148. return Dataset.query.filter_by(id=dataset_id).first()
  149. @staticmethod
  150. def check_dataset_model_setting(dataset):
  151. if dataset.indexing_technique == "high_quality":
  152. try:
  153. model_manager = ModelManager()
  154. model_manager.get_model_instance(
  155. tenant_id=dataset.tenant_id,
  156. provider=dataset.embedding_model_provider,
  157. model_type=ModelType.TEXT_EMBEDDING,
  158. model=dataset.embedding_model,
  159. )
  160. except LLMBadRequestError:
  161. raise ValueError(
  162. "No Embedding Model available. Please configure a valid provider "
  163. "in the Settings -> Model Provider."
  164. )
  165. except ProviderTokenNotInitError as ex:
  166. raise ValueError(f"The dataset in unavailable, due to: " f"{ex.description}")
  167. @staticmethod
  168. def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model: str):
  169. try:
  170. model_manager = ModelManager()
  171. model_manager.get_model_instance(
  172. tenant_id=tenant_id,
  173. provider=embedding_model_provider,
  174. model_type=ModelType.TEXT_EMBEDDING,
  175. model=embedding_model,
  176. )
  177. except LLMBadRequestError:
  178. raise ValueError(
  179. "No Embedding Model available. Please configure a valid provider " "in the Settings -> Model Provider."
  180. )
  181. except ProviderTokenNotInitError as ex:
  182. raise ValueError(f"The dataset in unavailable, due to: " f"{ex.description}")
  183. @staticmethod
  184. def update_dataset(dataset_id, data, user):
  185. data.pop("partial_member_list", None)
  186. filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"}
  187. dataset = DatasetService.get_dataset(dataset_id)
  188. DatasetService.check_dataset_permission(dataset, user)
  189. action = None
  190. if dataset.indexing_technique != data["indexing_technique"]:
  191. # if update indexing_technique
  192. if data["indexing_technique"] == "economy":
  193. action = "remove"
  194. filtered_data["embedding_model"] = None
  195. filtered_data["embedding_model_provider"] = None
  196. filtered_data["collection_binding_id"] = None
  197. elif data["indexing_technique"] == "high_quality":
  198. action = "add"
  199. # get embedding model setting
  200. try:
  201. model_manager = ModelManager()
  202. embedding_model = model_manager.get_model_instance(
  203. tenant_id=current_user.current_tenant_id,
  204. provider=data["embedding_model_provider"],
  205. model_type=ModelType.TEXT_EMBEDDING,
  206. model=data["embedding_model"],
  207. )
  208. filtered_data["embedding_model"] = embedding_model.model
  209. filtered_data["embedding_model_provider"] = embedding_model.provider
  210. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  211. embedding_model.provider, embedding_model.model
  212. )
  213. filtered_data["collection_binding_id"] = dataset_collection_binding.id
  214. except LLMBadRequestError:
  215. raise ValueError(
  216. "No Embedding Model available. Please configure a valid provider "
  217. "in the Settings -> Model Provider."
  218. )
  219. except ProviderTokenNotInitError as ex:
  220. raise ValueError(ex.description)
  221. else:
  222. if (
  223. data["embedding_model_provider"] != dataset.embedding_model_provider
  224. or data["embedding_model"] != dataset.embedding_model
  225. ):
  226. action = "update"
  227. try:
  228. model_manager = ModelManager()
  229. embedding_model = model_manager.get_model_instance(
  230. tenant_id=current_user.current_tenant_id,
  231. provider=data["embedding_model_provider"],
  232. model_type=ModelType.TEXT_EMBEDDING,
  233. model=data["embedding_model"],
  234. )
  235. filtered_data["embedding_model"] = embedding_model.model
  236. filtered_data["embedding_model_provider"] = embedding_model.provider
  237. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  238. embedding_model.provider, embedding_model.model
  239. )
  240. filtered_data["collection_binding_id"] = dataset_collection_binding.id
  241. except LLMBadRequestError:
  242. raise ValueError(
  243. "No Embedding Model available. Please configure a valid provider "
  244. "in the Settings -> Model Provider."
  245. )
  246. except ProviderTokenNotInitError as ex:
  247. raise ValueError(ex.description)
  248. filtered_data["updated_by"] = user.id
  249. filtered_data["updated_at"] = datetime.datetime.now()
  250. # update Retrieval model
  251. filtered_data["retrieval_model"] = data["retrieval_model"]
  252. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  253. db.session.commit()
  254. if action:
  255. deal_dataset_vector_index_task.delay(dataset_id, action)
  256. return dataset
  257. @staticmethod
  258. def delete_dataset(dataset_id, user):
  259. dataset = DatasetService.get_dataset(dataset_id)
  260. if dataset is None:
  261. return False
  262. DatasetService.check_dataset_permission(dataset, user)
  263. dataset_was_deleted.send(dataset)
  264. db.session.delete(dataset)
  265. db.session.commit()
  266. return True
  267. @staticmethod
  268. def dataset_use_check(dataset_id) -> bool:
  269. count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
  270. if count > 0:
  271. return True
  272. return False
  273. @staticmethod
  274. def check_dataset_permission(dataset, user):
  275. if dataset.tenant_id != user.current_tenant_id:
  276. logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
  277. raise NoPermissionError("You do not have permission to access this dataset.")
  278. if dataset.permission == DatasetPermissionEnum.ONLY_ME and dataset.created_by != user.id:
  279. logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
  280. raise NoPermissionError("You do not have permission to access this dataset.")
  281. if dataset.permission == "partial_members":
  282. user_permission = DatasetPermission.query.filter_by(dataset_id=dataset.id, account_id=user.id).first()
  283. if not user_permission and dataset.tenant_id != user.current_tenant_id and dataset.created_by != user.id:
  284. logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
  285. raise NoPermissionError("You do not have permission to access this dataset.")
  286. @staticmethod
  287. def check_dataset_operator_permission(user: Account = None, dataset: Dataset = None):
  288. if dataset.permission == DatasetPermissionEnum.ONLY_ME:
  289. if dataset.created_by != user.id:
  290. raise NoPermissionError("You do not have permission to access this dataset.")
  291. elif dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM:
  292. if not any(
  293. dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()
  294. ):
  295. raise NoPermissionError("You do not have permission to access this dataset.")
  296. @staticmethod
  297. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  298. dataset_queries = (
  299. DatasetQuery.query.filter_by(dataset_id=dataset_id)
  300. .order_by(db.desc(DatasetQuery.created_at))
  301. .paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
  302. )
  303. return dataset_queries.items, dataset_queries.total
  304. @staticmethod
  305. def get_related_apps(dataset_id: str):
  306. return (
  307. AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id)
  308. .order_by(db.desc(AppDatasetJoin.created_at))
  309. .all()
  310. )
  311. class DocumentService:
  312. DEFAULT_RULES = {
  313. "mode": "custom",
  314. "rules": {
  315. "pre_processing_rules": [
  316. {"id": "remove_extra_spaces", "enabled": True},
  317. {"id": "remove_urls_emails", "enabled": False},
  318. ],
  319. "segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50},
  320. },
  321. }
  322. DOCUMENT_METADATA_SCHEMA = {
  323. "book": {
  324. "title": str,
  325. "language": str,
  326. "author": str,
  327. "publisher": str,
  328. "publication_date": str,
  329. "isbn": str,
  330. "category": str,
  331. },
  332. "web_page": {
  333. "title": str,
  334. "url": str,
  335. "language": str,
  336. "publish_date": str,
  337. "author/publisher": str,
  338. "topic/keywords": str,
  339. "description": str,
  340. },
  341. "paper": {
  342. "title": str,
  343. "language": str,
  344. "author": str,
  345. "publish_date": str,
  346. "journal/conference_name": str,
  347. "volume/issue/page_numbers": str,
  348. "doi": str,
  349. "topic/keywords": str,
  350. "abstract": str,
  351. },
  352. "social_media_post": {
  353. "platform": str,
  354. "author/username": str,
  355. "publish_date": str,
  356. "post_url": str,
  357. "topic/tags": str,
  358. },
  359. "wikipedia_entry": {
  360. "title": str,
  361. "language": str,
  362. "web_page_url": str,
  363. "last_edit_date": str,
  364. "editor/contributor": str,
  365. "summary/introduction": str,
  366. },
  367. "personal_document": {
  368. "title": str,
  369. "author": str,
  370. "creation_date": str,
  371. "last_modified_date": str,
  372. "document_type": str,
  373. "tags/category": str,
  374. },
  375. "business_document": {
  376. "title": str,
  377. "author": str,
  378. "creation_date": str,
  379. "last_modified_date": str,
  380. "document_type": str,
  381. "department/team": str,
  382. },
  383. "im_chat_log": {
  384. "chat_platform": str,
  385. "chat_participants/group_name": str,
  386. "start_date": str,
  387. "end_date": str,
  388. "summary": str,
  389. },
  390. "synced_from_notion": {
  391. "title": str,
  392. "language": str,
  393. "author/creator": str,
  394. "creation_date": str,
  395. "last_modified_date": str,
  396. "notion_page_link": str,
  397. "category/tags": str,
  398. "description": str,
  399. },
  400. "synced_from_github": {
  401. "repository_name": str,
  402. "repository_description": str,
  403. "repository_owner/organization": str,
  404. "code_filename": str,
  405. "code_file_path": str,
  406. "programming_language": str,
  407. "github_link": str,
  408. "open_source_license": str,
  409. "commit_date": str,
  410. "commit_author": str,
  411. },
  412. "others": dict,
  413. }
  414. @staticmethod
  415. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  416. document = (
  417. db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
  418. )
  419. return document
  420. @staticmethod
  421. def get_document_by_id(document_id: str) -> Optional[Document]:
  422. document = db.session.query(Document).filter(Document.id == document_id).first()
  423. return document
  424. @staticmethod
  425. def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
  426. documents = db.session.query(Document).filter(Document.dataset_id == dataset_id, Document.enabled == True).all()
  427. return documents
  428. @staticmethod
  429. def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
  430. documents = (
  431. db.session.query(Document)
  432. .filter(Document.dataset_id == dataset_id, Document.indexing_status.in_(["error", "paused"]))
  433. .all()
  434. )
  435. return documents
  436. @staticmethod
  437. def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
  438. documents = (
  439. db.session.query(Document)
  440. .filter(
  441. Document.batch == batch,
  442. Document.dataset_id == dataset_id,
  443. Document.tenant_id == current_user.current_tenant_id,
  444. )
  445. .all()
  446. )
  447. return documents
  448. @staticmethod
  449. def get_document_file_detail(file_id: str):
  450. file_detail = db.session.query(UploadFile).filter(UploadFile.id == file_id).one_or_none()
  451. return file_detail
  452. @staticmethod
  453. def check_archived(document):
  454. if document.archived:
  455. return True
  456. else:
  457. return False
  458. @staticmethod
  459. def delete_document(document):
  460. # trigger document_was_deleted signal
  461. file_id = None
  462. if document.data_source_type == "upload_file":
  463. if document.data_source_info:
  464. data_source_info = document.data_source_info_dict
  465. if data_source_info and "upload_file_id" in data_source_info:
  466. file_id = data_source_info["upload_file_id"]
  467. document_was_deleted.send(
  468. document.id, dataset_id=document.dataset_id, doc_form=document.doc_form, file_id=file_id
  469. )
  470. db.session.delete(document)
  471. db.session.commit()
  472. @staticmethod
  473. def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
  474. dataset = DatasetService.get_dataset(dataset_id)
  475. if not dataset:
  476. raise ValueError("Dataset not found.")
  477. document = DocumentService.get_document(dataset_id, document_id)
  478. if not document:
  479. raise ValueError("Document not found.")
  480. if document.tenant_id != current_user.current_tenant_id:
  481. raise ValueError("No permission.")
  482. document.name = name
  483. db.session.add(document)
  484. db.session.commit()
  485. return document
  486. @staticmethod
  487. def pause_document(document):
  488. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  489. raise DocumentIndexingError()
  490. # update document to be paused
  491. document.is_paused = True
  492. document.paused_by = current_user.id
  493. document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  494. db.session.add(document)
  495. db.session.commit()
  496. # set document paused flag
  497. indexing_cache_key = "document_{}_is_paused".format(document.id)
  498. redis_client.setnx(indexing_cache_key, "True")
  499. @staticmethod
  500. def recover_document(document):
  501. if not document.is_paused:
  502. raise DocumentIndexingError()
  503. # update document to be recover
  504. document.is_paused = False
  505. document.paused_by = None
  506. document.paused_at = None
  507. db.session.add(document)
  508. db.session.commit()
  509. # delete paused flag
  510. indexing_cache_key = "document_{}_is_paused".format(document.id)
  511. redis_client.delete(indexing_cache_key)
  512. # trigger async task
  513. recover_document_indexing_task.delay(document.dataset_id, document.id)
  514. @staticmethod
  515. def retry_document(dataset_id: str, documents: list[Document]):
  516. for document in documents:
  517. # add retry flag
  518. retry_indexing_cache_key = "document_{}_is_retried".format(document.id)
  519. cache_result = redis_client.get(retry_indexing_cache_key)
  520. if cache_result is not None:
  521. raise ValueError("Document is being retried, please try again later")
  522. # retry document indexing
  523. document.indexing_status = "waiting"
  524. db.session.add(document)
  525. db.session.commit()
  526. redis_client.setex(retry_indexing_cache_key, 600, 1)
  527. # trigger async task
  528. document_ids = [document.id for document in documents]
  529. retry_document_indexing_task.delay(dataset_id, document_ids)
  530. @staticmethod
  531. def sync_website_document(dataset_id: str, document: Document):
  532. # add sync flag
  533. sync_indexing_cache_key = "document_{}_is_sync".format(document.id)
  534. cache_result = redis_client.get(sync_indexing_cache_key)
  535. if cache_result is not None:
  536. raise ValueError("Document is being synced, please try again later")
  537. # sync document indexing
  538. document.indexing_status = "waiting"
  539. data_source_info = document.data_source_info_dict
  540. data_source_info["mode"] = "scrape"
  541. document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
  542. db.session.add(document)
  543. db.session.commit()
  544. redis_client.setex(sync_indexing_cache_key, 600, 1)
  545. sync_website_document_indexing_task.delay(dataset_id, document.id)
  546. @staticmethod
  547. def get_documents_position(dataset_id):
  548. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  549. if document:
  550. return document.position + 1
  551. else:
  552. return 1
  553. @staticmethod
  554. def save_document_with_dataset_id(
  555. dataset: Dataset,
  556. document_data: dict,
  557. account: Account,
  558. dataset_process_rule: Optional[DatasetProcessRule] = None,
  559. created_from: str = "web",
  560. ):
  561. # check document limit
  562. features = FeatureService.get_features(current_user.current_tenant_id)
  563. if features.billing.enabled:
  564. if "original_document_id" not in document_data or not document_data["original_document_id"]:
  565. count = 0
  566. if document_data["data_source"]["type"] == "upload_file":
  567. upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"]
  568. count = len(upload_file_list)
  569. elif document_data["data_source"]["type"] == "notion_import":
  570. notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"]
  571. for notion_info in notion_info_list:
  572. count = count + len(notion_info["pages"])
  573. elif document_data["data_source"]["type"] == "website_crawl":
  574. website_info = document_data["data_source"]["info_list"]["website_info_list"]
  575. count = len(website_info["urls"])
  576. batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
  577. if count > batch_upload_limit:
  578. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  579. DocumentService.check_documents_upload_quota(count, features)
  580. # if dataset is empty, update dataset data_source_type
  581. if not dataset.data_source_type:
  582. dataset.data_source_type = document_data["data_source"]["type"]
  583. if not dataset.indexing_technique:
  584. if (
  585. "indexing_technique" not in document_data
  586. or document_data["indexing_technique"] not in Dataset.INDEXING_TECHNIQUE_LIST
  587. ):
  588. raise ValueError("Indexing technique is required")
  589. dataset.indexing_technique = document_data["indexing_technique"]
  590. if document_data["indexing_technique"] == "high_quality":
  591. model_manager = ModelManager()
  592. embedding_model = model_manager.get_default_model_instance(
  593. tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
  594. )
  595. dataset.embedding_model = embedding_model.model
  596. dataset.embedding_model_provider = embedding_model.provider
  597. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  598. embedding_model.provider, embedding_model.model
  599. )
  600. dataset.collection_binding_id = dataset_collection_binding.id
  601. if not dataset.retrieval_model:
  602. default_retrieval_model = {
  603. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  604. "reranking_enable": False,
  605. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  606. "top_k": 2,
  607. "score_threshold_enabled": False,
  608. }
  609. dataset.retrieval_model = (
  610. document_data.get("retrieval_model")
  611. if document_data.get("retrieval_model")
  612. else default_retrieval_model
  613. )
  614. documents = []
  615. batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999))
  616. if document_data.get("original_document_id"):
  617. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  618. documents.append(document)
  619. else:
  620. # save process rule
  621. if not dataset_process_rule:
  622. process_rule = document_data["process_rule"]
  623. if process_rule["mode"] == "custom":
  624. dataset_process_rule = DatasetProcessRule(
  625. dataset_id=dataset.id,
  626. mode=process_rule["mode"],
  627. rules=json.dumps(process_rule["rules"]),
  628. created_by=account.id,
  629. )
  630. elif process_rule["mode"] == "automatic":
  631. dataset_process_rule = DatasetProcessRule(
  632. dataset_id=dataset.id,
  633. mode=process_rule["mode"],
  634. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  635. created_by=account.id,
  636. )
  637. db.session.add(dataset_process_rule)
  638. db.session.commit()
  639. position = DocumentService.get_documents_position(dataset.id)
  640. document_ids = []
  641. duplicate_document_ids = []
  642. if document_data["data_source"]["type"] == "upload_file":
  643. upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"]
  644. for file_id in upload_file_list:
  645. file = (
  646. db.session.query(UploadFile)
  647. .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
  648. .first()
  649. )
  650. # raise error if file not found
  651. if not file:
  652. raise FileNotExistsError()
  653. file_name = file.name
  654. data_source_info = {
  655. "upload_file_id": file_id,
  656. }
  657. # check duplicate
  658. if document_data.get("duplicate", False):
  659. document = Document.query.filter_by(
  660. dataset_id=dataset.id,
  661. tenant_id=current_user.current_tenant_id,
  662. data_source_type="upload_file",
  663. enabled=True,
  664. name=file_name,
  665. ).first()
  666. if document:
  667. document.dataset_process_rule_id = dataset_process_rule.id
  668. document.updated_at = datetime.datetime.utcnow()
  669. document.created_from = created_from
  670. document.doc_form = document_data["doc_form"]
  671. document.doc_language = document_data["doc_language"]
  672. document.data_source_info = json.dumps(data_source_info)
  673. document.batch = batch
  674. document.indexing_status = "waiting"
  675. db.session.add(document)
  676. documents.append(document)
  677. duplicate_document_ids.append(document.id)
  678. continue
  679. document = DocumentService.build_document(
  680. dataset,
  681. dataset_process_rule.id,
  682. document_data["data_source"]["type"],
  683. document_data["doc_form"],
  684. document_data["doc_language"],
  685. data_source_info,
  686. created_from,
  687. position,
  688. account,
  689. file_name,
  690. batch,
  691. )
  692. db.session.add(document)
  693. db.session.flush()
  694. document_ids.append(document.id)
  695. documents.append(document)
  696. position += 1
  697. elif document_data["data_source"]["type"] == "notion_import":
  698. notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"]
  699. exist_page_ids = []
  700. exist_document = {}
  701. documents = Document.query.filter_by(
  702. dataset_id=dataset.id,
  703. tenant_id=current_user.current_tenant_id,
  704. data_source_type="notion_import",
  705. enabled=True,
  706. ).all()
  707. if documents:
  708. for document in documents:
  709. data_source_info = json.loads(document.data_source_info)
  710. exist_page_ids.append(data_source_info["notion_page_id"])
  711. exist_document[data_source_info["notion_page_id"]] = document.id
  712. for notion_info in notion_info_list:
  713. workspace_id = notion_info["workspace_id"]
  714. data_source_binding = DataSourceOauthBinding.query.filter(
  715. db.and_(
  716. DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
  717. DataSourceOauthBinding.provider == "notion",
  718. DataSourceOauthBinding.disabled == False,
  719. DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
  720. )
  721. ).first()
  722. if not data_source_binding:
  723. raise ValueError("Data source binding not found.")
  724. for page in notion_info["pages"]:
  725. if page["page_id"] not in exist_page_ids:
  726. data_source_info = {
  727. "notion_workspace_id": workspace_id,
  728. "notion_page_id": page["page_id"],
  729. "notion_page_icon": page["page_icon"],
  730. "type": page["type"],
  731. }
  732. document = DocumentService.build_document(
  733. dataset,
  734. dataset_process_rule.id,
  735. document_data["data_source"]["type"],
  736. document_data["doc_form"],
  737. document_data["doc_language"],
  738. data_source_info,
  739. created_from,
  740. position,
  741. account,
  742. page["page_name"],
  743. batch,
  744. )
  745. db.session.add(document)
  746. db.session.flush()
  747. document_ids.append(document.id)
  748. documents.append(document)
  749. position += 1
  750. else:
  751. exist_document.pop(page["page_id"])
  752. # delete not selected documents
  753. if len(exist_document) > 0:
  754. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  755. elif document_data["data_source"]["type"] == "website_crawl":
  756. website_info = document_data["data_source"]["info_list"]["website_info_list"]
  757. urls = website_info["urls"]
  758. for url in urls:
  759. data_source_info = {
  760. "url": url,
  761. "provider": website_info["provider"],
  762. "job_id": website_info["job_id"],
  763. "only_main_content": website_info.get("only_main_content", False),
  764. "mode": "crawl",
  765. }
  766. if len(url) > 255:
  767. document_name = url[:200] + "..."
  768. else:
  769. document_name = url
  770. document = DocumentService.build_document(
  771. dataset,
  772. dataset_process_rule.id,
  773. document_data["data_source"]["type"],
  774. document_data["doc_form"],
  775. document_data["doc_language"],
  776. data_source_info,
  777. created_from,
  778. position,
  779. account,
  780. document_name,
  781. batch,
  782. )
  783. db.session.add(document)
  784. db.session.flush()
  785. document_ids.append(document.id)
  786. documents.append(document)
  787. position += 1
  788. db.session.commit()
  789. # trigger async task
  790. if document_ids:
  791. document_indexing_task.delay(dataset.id, document_ids)
  792. if duplicate_document_ids:
  793. duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
  794. return documents, batch
  795. @staticmethod
  796. def check_documents_upload_quota(count: int, features: FeatureModel):
  797. can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
  798. if count > can_upload_size:
  799. raise ValueError(
  800. f"You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded."
  801. )
  802. @staticmethod
  803. def build_document(
  804. dataset: Dataset,
  805. process_rule_id: str,
  806. data_source_type: str,
  807. document_form: str,
  808. document_language: str,
  809. data_source_info: dict,
  810. created_from: str,
  811. position: int,
  812. account: Account,
  813. name: str,
  814. batch: str,
  815. ):
  816. document = Document(
  817. tenant_id=dataset.tenant_id,
  818. dataset_id=dataset.id,
  819. position=position,
  820. data_source_type=data_source_type,
  821. data_source_info=json.dumps(data_source_info),
  822. dataset_process_rule_id=process_rule_id,
  823. batch=batch,
  824. name=name,
  825. created_from=created_from,
  826. created_by=account.id,
  827. doc_form=document_form,
  828. doc_language=document_language,
  829. )
  830. return document
  831. @staticmethod
  832. def get_tenant_documents_count():
  833. documents_count = Document.query.filter(
  834. Document.completed_at.isnot(None),
  835. Document.enabled == True,
  836. Document.archived == False,
  837. Document.tenant_id == current_user.current_tenant_id,
  838. ).count()
  839. return documents_count
  840. @staticmethod
  841. def update_document_with_dataset_id(
  842. dataset: Dataset,
  843. document_data: dict,
  844. account: Account,
  845. dataset_process_rule: Optional[DatasetProcessRule] = None,
  846. created_from: str = "web",
  847. ):
  848. DatasetService.check_dataset_model_setting(dataset)
  849. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  850. if document.display_status != "available":
  851. raise ValueError("Document is not available")
  852. # update document name
  853. if document_data.get("name"):
  854. document.name = document_data["name"]
  855. # save process rule
  856. if document_data.get("process_rule"):
  857. process_rule = document_data["process_rule"]
  858. if process_rule["mode"] == "custom":
  859. dataset_process_rule = DatasetProcessRule(
  860. dataset_id=dataset.id,
  861. mode=process_rule["mode"],
  862. rules=json.dumps(process_rule["rules"]),
  863. created_by=account.id,
  864. )
  865. elif process_rule["mode"] == "automatic":
  866. dataset_process_rule = DatasetProcessRule(
  867. dataset_id=dataset.id,
  868. mode=process_rule["mode"],
  869. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  870. created_by=account.id,
  871. )
  872. db.session.add(dataset_process_rule)
  873. db.session.commit()
  874. document.dataset_process_rule_id = dataset_process_rule.id
  875. # update document data source
  876. if document_data.get("data_source"):
  877. file_name = ""
  878. data_source_info = {}
  879. if document_data["data_source"]["type"] == "upload_file":
  880. upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"]
  881. for file_id in upload_file_list:
  882. file = (
  883. db.session.query(UploadFile)
  884. .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
  885. .first()
  886. )
  887. # raise error if file not found
  888. if not file:
  889. raise FileNotExistsError()
  890. file_name = file.name
  891. data_source_info = {
  892. "upload_file_id": file_id,
  893. }
  894. elif document_data["data_source"]["type"] == "notion_import":
  895. notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"]
  896. for notion_info in notion_info_list:
  897. workspace_id = notion_info["workspace_id"]
  898. data_source_binding = DataSourceOauthBinding.query.filter(
  899. db.and_(
  900. DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
  901. DataSourceOauthBinding.provider == "notion",
  902. DataSourceOauthBinding.disabled == False,
  903. DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
  904. )
  905. ).first()
  906. if not data_source_binding:
  907. raise ValueError("Data source binding not found.")
  908. for page in notion_info["pages"]:
  909. data_source_info = {
  910. "notion_workspace_id": workspace_id,
  911. "notion_page_id": page["page_id"],
  912. "notion_page_icon": page["page_icon"],
  913. "type": page["type"],
  914. }
  915. elif document_data["data_source"]["type"] == "website_crawl":
  916. website_info = document_data["data_source"]["info_list"]["website_info_list"]
  917. urls = website_info["urls"]
  918. for url in urls:
  919. data_source_info = {
  920. "url": url,
  921. "provider": website_info["provider"],
  922. "job_id": website_info["job_id"],
  923. "only_main_content": website_info.get("only_main_content", False),
  924. "mode": "crawl",
  925. }
  926. document.data_source_type = document_data["data_source"]["type"]
  927. document.data_source_info = json.dumps(data_source_info)
  928. document.name = file_name
  929. # update document to be waiting
  930. document.indexing_status = "waiting"
  931. document.completed_at = None
  932. document.processing_started_at = None
  933. document.parsing_completed_at = None
  934. document.cleaning_completed_at = None
  935. document.splitting_completed_at = None
  936. document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  937. document.created_from = created_from
  938. document.doc_form = document_data["doc_form"]
  939. db.session.add(document)
  940. db.session.commit()
  941. # update document segment
  942. update_params = {DocumentSegment.status: "re_segment"}
  943. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  944. db.session.commit()
  945. # trigger async task
  946. document_indexing_update_task.delay(document.dataset_id, document.id)
  947. return document
  948. @staticmethod
  949. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  950. features = FeatureService.get_features(current_user.current_tenant_id)
  951. if features.billing.enabled:
  952. count = 0
  953. if document_data["data_source"]["type"] == "upload_file":
  954. upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"]
  955. count = len(upload_file_list)
  956. elif document_data["data_source"]["type"] == "notion_import":
  957. notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"]
  958. for notion_info in notion_info_list:
  959. count = count + len(notion_info["pages"])
  960. elif document_data["data_source"]["type"] == "website_crawl":
  961. website_info = document_data["data_source"]["info_list"]["website_info_list"]
  962. count = len(website_info["urls"])
  963. batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
  964. if count > batch_upload_limit:
  965. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  966. DocumentService.check_documents_upload_quota(count, features)
  967. embedding_model = None
  968. dataset_collection_binding_id = None
  969. retrieval_model = None
  970. if document_data["indexing_technique"] == "high_quality":
  971. model_manager = ModelManager()
  972. embedding_model = model_manager.get_default_model_instance(
  973. tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
  974. )
  975. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  976. embedding_model.provider, embedding_model.model
  977. )
  978. dataset_collection_binding_id = dataset_collection_binding.id
  979. if document_data.get("retrieval_model"):
  980. retrieval_model = document_data["retrieval_model"]
  981. else:
  982. default_retrieval_model = {
  983. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  984. "reranking_enable": False,
  985. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  986. "top_k": 2,
  987. "score_threshold_enabled": False,
  988. }
  989. retrieval_model = default_retrieval_model
  990. # save dataset
  991. dataset = Dataset(
  992. tenant_id=tenant_id,
  993. name="",
  994. data_source_type=document_data["data_source"]["type"],
  995. indexing_technique=document_data["indexing_technique"],
  996. created_by=account.id,
  997. embedding_model=embedding_model.model if embedding_model else None,
  998. embedding_model_provider=embedding_model.provider if embedding_model else None,
  999. collection_binding_id=dataset_collection_binding_id,
  1000. retrieval_model=retrieval_model,
  1001. )
  1002. db.session.add(dataset)
  1003. db.session.flush()
  1004. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  1005. cut_length = 18
  1006. cut_name = documents[0].name[:cut_length]
  1007. dataset.name = cut_name + "..."
  1008. dataset.description = "useful for when you want to answer queries about the " + documents[0].name
  1009. db.session.commit()
  1010. return dataset, documents, batch
  1011. @classmethod
  1012. def document_create_args_validate(cls, args: dict):
  1013. if "original_document_id" not in args or not args["original_document_id"]:
  1014. DocumentService.data_source_args_validate(args)
  1015. DocumentService.process_rule_args_validate(args)
  1016. else:
  1017. if ("data_source" not in args and not args["data_source"]) and (
  1018. "process_rule" not in args and not args["process_rule"]
  1019. ):
  1020. raise ValueError("Data source or Process rule is required")
  1021. else:
  1022. if args.get("data_source"):
  1023. DocumentService.data_source_args_validate(args)
  1024. if args.get("process_rule"):
  1025. DocumentService.process_rule_args_validate(args)
  1026. @classmethod
  1027. def data_source_args_validate(cls, args: dict):
  1028. if "data_source" not in args or not args["data_source"]:
  1029. raise ValueError("Data source is required")
  1030. if not isinstance(args["data_source"], dict):
  1031. raise ValueError("Data source is invalid")
  1032. if "type" not in args["data_source"] or not args["data_source"]["type"]:
  1033. raise ValueError("Data source type is required")
  1034. if args["data_source"]["type"] not in Document.DATA_SOURCES:
  1035. raise ValueError("Data source type is invalid")
  1036. if "info_list" not in args["data_source"] or not args["data_source"]["info_list"]:
  1037. raise ValueError("Data source info is required")
  1038. if args["data_source"]["type"] == "upload_file":
  1039. if (
  1040. "file_info_list" not in args["data_source"]["info_list"]
  1041. or not args["data_source"]["info_list"]["file_info_list"]
  1042. ):
  1043. raise ValueError("File source info is required")
  1044. if args["data_source"]["type"] == "notion_import":
  1045. if (
  1046. "notion_info_list" not in args["data_source"]["info_list"]
  1047. or not args["data_source"]["info_list"]["notion_info_list"]
  1048. ):
  1049. raise ValueError("Notion source info is required")
  1050. if args["data_source"]["type"] == "website_crawl":
  1051. if (
  1052. "website_info_list" not in args["data_source"]["info_list"]
  1053. or not args["data_source"]["info_list"]["website_info_list"]
  1054. ):
  1055. raise ValueError("Website source info is required")
  1056. @classmethod
  1057. def process_rule_args_validate(cls, args: dict):
  1058. if "process_rule" not in args or not args["process_rule"]:
  1059. raise ValueError("Process rule is required")
  1060. if not isinstance(args["process_rule"], dict):
  1061. raise ValueError("Process rule is invalid")
  1062. if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]:
  1063. raise ValueError("Process rule mode is required")
  1064. if args["process_rule"]["mode"] not in DatasetProcessRule.MODES:
  1065. raise ValueError("Process rule mode is invalid")
  1066. if args["process_rule"]["mode"] == "automatic":
  1067. args["process_rule"]["rules"] = {}
  1068. else:
  1069. if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]:
  1070. raise ValueError("Process rule rules is required")
  1071. if not isinstance(args["process_rule"]["rules"], dict):
  1072. raise ValueError("Process rule rules is invalid")
  1073. if (
  1074. "pre_processing_rules" not in args["process_rule"]["rules"]
  1075. or args["process_rule"]["rules"]["pre_processing_rules"] is None
  1076. ):
  1077. raise ValueError("Process rule pre_processing_rules is required")
  1078. if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list):
  1079. raise ValueError("Process rule pre_processing_rules is invalid")
  1080. unique_pre_processing_rule_dicts = {}
  1081. for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]:
  1082. if "id" not in pre_processing_rule or not pre_processing_rule["id"]:
  1083. raise ValueError("Process rule pre_processing_rules id is required")
  1084. if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  1085. raise ValueError("Process rule pre_processing_rules id is invalid")
  1086. if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None:
  1087. raise ValueError("Process rule pre_processing_rules enabled is required")
  1088. if not isinstance(pre_processing_rule["enabled"], bool):
  1089. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  1090. unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule
  1091. args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values())
  1092. if (
  1093. "segmentation" not in args["process_rule"]["rules"]
  1094. or args["process_rule"]["rules"]["segmentation"] is None
  1095. ):
  1096. raise ValueError("Process rule segmentation is required")
  1097. if not isinstance(args["process_rule"]["rules"]["segmentation"], dict):
  1098. raise ValueError("Process rule segmentation is invalid")
  1099. if (
  1100. "separator" not in args["process_rule"]["rules"]["segmentation"]
  1101. or not args["process_rule"]["rules"]["segmentation"]["separator"]
  1102. ):
  1103. raise ValueError("Process rule segmentation separator is required")
  1104. if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str):
  1105. raise ValueError("Process rule segmentation separator is invalid")
  1106. if (
  1107. "max_tokens" not in args["process_rule"]["rules"]["segmentation"]
  1108. or not args["process_rule"]["rules"]["segmentation"]["max_tokens"]
  1109. ):
  1110. raise ValueError("Process rule segmentation max_tokens is required")
  1111. if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):
  1112. raise ValueError("Process rule segmentation max_tokens is invalid")
  1113. @classmethod
  1114. def estimate_args_validate(cls, args: dict):
  1115. if "info_list" not in args or not args["info_list"]:
  1116. raise ValueError("Data source info is required")
  1117. if not isinstance(args["info_list"], dict):
  1118. raise ValueError("Data info is invalid")
  1119. if "process_rule" not in args or not args["process_rule"]:
  1120. raise ValueError("Process rule is required")
  1121. if not isinstance(args["process_rule"], dict):
  1122. raise ValueError("Process rule is invalid")
  1123. if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]:
  1124. raise ValueError("Process rule mode is required")
  1125. if args["process_rule"]["mode"] not in DatasetProcessRule.MODES:
  1126. raise ValueError("Process rule mode is invalid")
  1127. if args["process_rule"]["mode"] == "automatic":
  1128. args["process_rule"]["rules"] = {}
  1129. else:
  1130. if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]:
  1131. raise ValueError("Process rule rules is required")
  1132. if not isinstance(args["process_rule"]["rules"], dict):
  1133. raise ValueError("Process rule rules is invalid")
  1134. if (
  1135. "pre_processing_rules" not in args["process_rule"]["rules"]
  1136. or args["process_rule"]["rules"]["pre_processing_rules"] is None
  1137. ):
  1138. raise ValueError("Process rule pre_processing_rules is required")
  1139. if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list):
  1140. raise ValueError("Process rule pre_processing_rules is invalid")
  1141. unique_pre_processing_rule_dicts = {}
  1142. for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]:
  1143. if "id" not in pre_processing_rule or not pre_processing_rule["id"]:
  1144. raise ValueError("Process rule pre_processing_rules id is required")
  1145. if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  1146. raise ValueError("Process rule pre_processing_rules id is invalid")
  1147. if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None:
  1148. raise ValueError("Process rule pre_processing_rules enabled is required")
  1149. if not isinstance(pre_processing_rule["enabled"], bool):
  1150. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  1151. unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule
  1152. args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values())
  1153. if (
  1154. "segmentation" not in args["process_rule"]["rules"]
  1155. or args["process_rule"]["rules"]["segmentation"] is None
  1156. ):
  1157. raise ValueError("Process rule segmentation is required")
  1158. if not isinstance(args["process_rule"]["rules"]["segmentation"], dict):
  1159. raise ValueError("Process rule segmentation is invalid")
  1160. if (
  1161. "separator" not in args["process_rule"]["rules"]["segmentation"]
  1162. or not args["process_rule"]["rules"]["segmentation"]["separator"]
  1163. ):
  1164. raise ValueError("Process rule segmentation separator is required")
  1165. if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str):
  1166. raise ValueError("Process rule segmentation separator is invalid")
  1167. if (
  1168. "max_tokens" not in args["process_rule"]["rules"]["segmentation"]
  1169. or not args["process_rule"]["rules"]["segmentation"]["max_tokens"]
  1170. ):
  1171. raise ValueError("Process rule segmentation max_tokens is required")
  1172. if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):
  1173. raise ValueError("Process rule segmentation max_tokens is invalid")
  1174. class SegmentService:
  1175. @classmethod
  1176. def segment_create_args_validate(cls, args: dict, document: Document):
  1177. if document.doc_form == "qa_model":
  1178. if "answer" not in args or not args["answer"]:
  1179. raise ValueError("Answer is required")
  1180. if not args["answer"].strip():
  1181. raise ValueError("Answer is empty")
  1182. if "content" not in args or not args["content"] or not args["content"].strip():
  1183. raise ValueError("Content is empty")
  1184. @classmethod
  1185. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  1186. content = args["content"]
  1187. doc_id = str(uuid.uuid4())
  1188. segment_hash = helper.generate_text_hash(content)
  1189. tokens = 0
  1190. if dataset.indexing_technique == "high_quality":
  1191. model_manager = ModelManager()
  1192. embedding_model = model_manager.get_model_instance(
  1193. tenant_id=current_user.current_tenant_id,
  1194. provider=dataset.embedding_model_provider,
  1195. model_type=ModelType.TEXT_EMBEDDING,
  1196. model=dataset.embedding_model,
  1197. )
  1198. # calc embedding use tokens
  1199. tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
  1200. lock_name = "add_segment_lock_document_id_{}".format(document.id)
  1201. with redis_client.lock(lock_name, timeout=600):
  1202. max_position = (
  1203. db.session.query(func.max(DocumentSegment.position))
  1204. .filter(DocumentSegment.document_id == document.id)
  1205. .scalar()
  1206. )
  1207. segment_document = DocumentSegment(
  1208. tenant_id=current_user.current_tenant_id,
  1209. dataset_id=document.dataset_id,
  1210. document_id=document.id,
  1211. index_node_id=doc_id,
  1212. index_node_hash=segment_hash,
  1213. position=max_position + 1 if max_position else 1,
  1214. content=content,
  1215. word_count=len(content),
  1216. tokens=tokens,
  1217. status="completed",
  1218. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1219. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1220. created_by=current_user.id,
  1221. )
  1222. if document.doc_form == "qa_model":
  1223. segment_document.answer = args["answer"]
  1224. db.session.add(segment_document)
  1225. db.session.commit()
  1226. # save vector index
  1227. try:
  1228. VectorService.create_segments_vector([args["keywords"]], [segment_document], dataset)
  1229. except Exception as e:
  1230. logging.exception("create segment index failed")
  1231. segment_document.enabled = False
  1232. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1233. segment_document.status = "error"
  1234. segment_document.error = str(e)
  1235. db.session.commit()
  1236. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  1237. return segment
  1238. @classmethod
  1239. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  1240. lock_name = "multi_add_segment_lock_document_id_{}".format(document.id)
  1241. with redis_client.lock(lock_name, timeout=600):
  1242. embedding_model = None
  1243. if dataset.indexing_technique == "high_quality":
  1244. model_manager = ModelManager()
  1245. embedding_model = model_manager.get_model_instance(
  1246. tenant_id=current_user.current_tenant_id,
  1247. provider=dataset.embedding_model_provider,
  1248. model_type=ModelType.TEXT_EMBEDDING,
  1249. model=dataset.embedding_model,
  1250. )
  1251. max_position = (
  1252. db.session.query(func.max(DocumentSegment.position))
  1253. .filter(DocumentSegment.document_id == document.id)
  1254. .scalar()
  1255. )
  1256. pre_segment_data_list = []
  1257. segment_data_list = []
  1258. keywords_list = []
  1259. for segment_item in segments:
  1260. content = segment_item["content"]
  1261. doc_id = str(uuid.uuid4())
  1262. segment_hash = helper.generate_text_hash(content)
  1263. tokens = 0
  1264. if dataset.indexing_technique == "high_quality" and embedding_model:
  1265. # calc embedding use tokens
  1266. tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
  1267. segment_document = DocumentSegment(
  1268. tenant_id=current_user.current_tenant_id,
  1269. dataset_id=document.dataset_id,
  1270. document_id=document.id,
  1271. index_node_id=doc_id,
  1272. index_node_hash=segment_hash,
  1273. position=max_position + 1 if max_position else 1,
  1274. content=content,
  1275. word_count=len(content),
  1276. tokens=tokens,
  1277. status="completed",
  1278. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1279. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1280. created_by=current_user.id,
  1281. )
  1282. if document.doc_form == "qa_model":
  1283. segment_document.answer = segment_item["answer"]
  1284. db.session.add(segment_document)
  1285. segment_data_list.append(segment_document)
  1286. pre_segment_data_list.append(segment_document)
  1287. if "keywords" in segment_item:
  1288. keywords_list.append(segment_item["keywords"])
  1289. else:
  1290. keywords_list.append(None)
  1291. try:
  1292. # save vector index
  1293. VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
  1294. except Exception as e:
  1295. logging.exception("create segment index failed")
  1296. for segment_document in segment_data_list:
  1297. segment_document.enabled = False
  1298. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1299. segment_document.status = "error"
  1300. segment_document.error = str(e)
  1301. db.session.commit()
  1302. return segment_data_list
  1303. @classmethod
  1304. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  1305. indexing_cache_key = "segment_{}_indexing".format(segment.id)
  1306. cache_result = redis_client.get(indexing_cache_key)
  1307. if cache_result is not None:
  1308. raise ValueError("Segment is indexing, please try again later")
  1309. if "enabled" in args and args["enabled"] is not None:
  1310. action = args["enabled"]
  1311. if segment.enabled != action:
  1312. if not action:
  1313. segment.enabled = action
  1314. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1315. segment.disabled_by = current_user.id
  1316. db.session.add(segment)
  1317. db.session.commit()
  1318. # Set cache to prevent indexing the same segment multiple times
  1319. redis_client.setex(indexing_cache_key, 600, 1)
  1320. disable_segment_from_index_task.delay(segment.id)
  1321. return segment
  1322. if not segment.enabled:
  1323. if "enabled" in args and args["enabled"] is not None:
  1324. if not args["enabled"]:
  1325. raise ValueError("Can't update disabled segment")
  1326. else:
  1327. raise ValueError("Can't update disabled segment")
  1328. try:
  1329. content = args["content"]
  1330. if segment.content == content:
  1331. if document.doc_form == "qa_model":
  1332. segment.answer = args["answer"]
  1333. if args.get("keywords"):
  1334. segment.keywords = args["keywords"]
  1335. segment.enabled = True
  1336. segment.disabled_at = None
  1337. segment.disabled_by = None
  1338. db.session.add(segment)
  1339. db.session.commit()
  1340. # update segment index task
  1341. if "keywords" in args:
  1342. keyword = Keyword(dataset)
  1343. keyword.delete_by_ids([segment.index_node_id])
  1344. document = RAGDocument(
  1345. page_content=segment.content,
  1346. metadata={
  1347. "doc_id": segment.index_node_id,
  1348. "doc_hash": segment.index_node_hash,
  1349. "document_id": segment.document_id,
  1350. "dataset_id": segment.dataset_id,
  1351. },
  1352. )
  1353. keyword.add_texts([document], keywords_list=[args["keywords"]])
  1354. else:
  1355. segment_hash = helper.generate_text_hash(content)
  1356. tokens = 0
  1357. if dataset.indexing_technique == "high_quality":
  1358. model_manager = ModelManager()
  1359. embedding_model = model_manager.get_model_instance(
  1360. tenant_id=current_user.current_tenant_id,
  1361. provider=dataset.embedding_model_provider,
  1362. model_type=ModelType.TEXT_EMBEDDING,
  1363. model=dataset.embedding_model,
  1364. )
  1365. # calc embedding use tokens
  1366. tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
  1367. segment.content = content
  1368. segment.index_node_hash = segment_hash
  1369. segment.word_count = len(content)
  1370. segment.tokens = tokens
  1371. segment.status = "completed"
  1372. segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1373. segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1374. segment.updated_by = current_user.id
  1375. segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1376. segment.enabled = True
  1377. segment.disabled_at = None
  1378. segment.disabled_by = None
  1379. if document.doc_form == "qa_model":
  1380. segment.answer = args["answer"]
  1381. db.session.add(segment)
  1382. db.session.commit()
  1383. # update segment vector index
  1384. VectorService.update_segment_vector(args["keywords"], segment, dataset)
  1385. except Exception as e:
  1386. logging.exception("update segment index failed")
  1387. segment.enabled = False
  1388. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1389. segment.status = "error"
  1390. segment.error = str(e)
  1391. db.session.commit()
  1392. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1393. return segment
  1394. @classmethod
  1395. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1396. indexing_cache_key = "segment_{}_delete_indexing".format(segment.id)
  1397. cache_result = redis_client.get(indexing_cache_key)
  1398. if cache_result is not None:
  1399. raise ValueError("Segment is deleting.")
  1400. # enabled segment need to delete index
  1401. if segment.enabled:
  1402. # send delete segment index task
  1403. redis_client.setex(indexing_cache_key, 600, 1)
  1404. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  1405. db.session.delete(segment)
  1406. db.session.commit()
  1407. class DatasetCollectionBindingService:
  1408. @classmethod
  1409. def get_dataset_collection_binding(
  1410. cls, provider_name: str, model_name: str, collection_type: str = "dataset"
  1411. ) -> DatasetCollectionBinding:
  1412. dataset_collection_binding = (
  1413. db.session.query(DatasetCollectionBinding)
  1414. .filter(
  1415. DatasetCollectionBinding.provider_name == provider_name,
  1416. DatasetCollectionBinding.model_name == model_name,
  1417. DatasetCollectionBinding.type == collection_type,
  1418. )
  1419. .order_by(DatasetCollectionBinding.created_at)
  1420. .first()
  1421. )
  1422. if not dataset_collection_binding:
  1423. dataset_collection_binding = DatasetCollectionBinding(
  1424. provider_name=provider_name,
  1425. model_name=model_name,
  1426. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  1427. type=collection_type,
  1428. )
  1429. db.session.add(dataset_collection_binding)
  1430. db.session.commit()
  1431. return dataset_collection_binding
  1432. @classmethod
  1433. def get_dataset_collection_binding_by_id_and_type(
  1434. cls, collection_binding_id: str, collection_type: str = "dataset"
  1435. ) -> DatasetCollectionBinding:
  1436. dataset_collection_binding = (
  1437. db.session.query(DatasetCollectionBinding)
  1438. .filter(
  1439. DatasetCollectionBinding.id == collection_binding_id, DatasetCollectionBinding.type == collection_type
  1440. )
  1441. .order_by(DatasetCollectionBinding.created_at)
  1442. .first()
  1443. )
  1444. return dataset_collection_binding
  1445. class DatasetPermissionService:
  1446. @classmethod
  1447. def get_dataset_partial_member_list(cls, dataset_id):
  1448. user_list_query = (
  1449. db.session.query(
  1450. DatasetPermission.account_id,
  1451. )
  1452. .filter(DatasetPermission.dataset_id == dataset_id)
  1453. .all()
  1454. )
  1455. user_list = []
  1456. for user in user_list_query:
  1457. user_list.append(user.account_id)
  1458. return user_list
  1459. @classmethod
  1460. def update_partial_member_list(cls, tenant_id, dataset_id, user_list):
  1461. try:
  1462. db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
  1463. permissions = []
  1464. for user in user_list:
  1465. permission = DatasetPermission(
  1466. tenant_id=tenant_id,
  1467. dataset_id=dataset_id,
  1468. account_id=user["user_id"],
  1469. )
  1470. permissions.append(permission)
  1471. db.session.add_all(permissions)
  1472. db.session.commit()
  1473. except Exception as e:
  1474. db.session.rollback()
  1475. raise e
  1476. @classmethod
  1477. def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):
  1478. if not user.is_dataset_editor:
  1479. raise NoPermissionError("User does not have permission to edit this dataset.")
  1480. if user.is_dataset_operator and dataset.permission != requested_permission:
  1481. raise NoPermissionError("Dataset operators cannot change the dataset permissions.")
  1482. if user.is_dataset_operator and requested_permission == "partial_members":
  1483. if not requested_partial_member_list:
  1484. raise ValueError("Partial member list is required when setting to partial members.")
  1485. local_member_list = cls.get_dataset_partial_member_list(dataset.id)
  1486. request_member_list = [user["user_id"] for user in requested_partial_member_list]
  1487. if set(local_member_list) != set(request_member_list):
  1488. raise ValueError("Dataset operators cannot change the dataset permissions.")
  1489. @classmethod
  1490. def clear_partial_member_list(cls, dataset_id):
  1491. try:
  1492. db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
  1493. db.session.commit()
  1494. except Exception as e:
  1495. db.session.rollback()
  1496. raise e